
Author's Accepted Manuscript

NaVPO₄F with High Cycling Stability as a Promising Cathode for Sodium-ion Battery

Markas Law, Palani Balaya

www.elsevier.com/locate/ensm

PII: S2405-8297(17)30142-3

DOI: http://dx.doi.org/10.1016/j.ensm.2017.08.007

Reference: ENSM201

To appear in: Energy Storage Materials

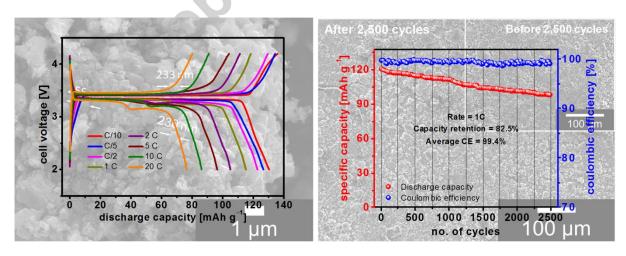
Received date: 17 April 2017 Revised date: 4 August 2017 Accepted date: 14 August 2017

Cite this article as: Markas Law and Palani Balaya, NaVPO₄F with High Cycling Stability as a Promising Cathode for Sodium-ion Battery, Energy Storage Materials, http://dx.doi.org/10.1016/j.ensm.2017.08.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NaVPO₄F with High Cycling Stability as a Promising Cathode for Sodium-ion Battery

Markas Law and Palani Balaya*


Department of Mechanical Engineering, National University of Singapore, Singapore 117575.

*Corresponding author. Tel: +65 6516 7644; Fax: +65 6779 1459. mpepb@nus.edu.sg.

Abstract

In this article, we report a high-performing fluorophosphate-based cathode material for sodium-ion battery, namely NaVPO₄F, synthesised by a facile one-step soft template method. We compared physical and electrochemical properties between the NaVPO₄F materials synthesised using V_2O_3 and V_2O_5 as starting precursors. FESEM images show that the samples consist of particles of size in the range 200-800 nm. The synthesised NaVPO₄F using V_2O_5 cycled vs. sodium metal at 0.1 C is able to deliver a high discharge capacity of 133 mAh g⁻¹, with a flat discharge plateau at 3.33 V. At a moderate current rate of 1 C, it still manages to achieve a reversible discharge capacity of 121 mAh g⁻¹, and retains 82% of its initial capacity after 2,500 cycles. Notably, this electrode material exhibits impressive long-term cyclabilty at high rates, where it is able to retain 81 and 77 % of respective initial discharge capacities even after 10,000 cycles at 10 and 20 C. This durable performance of NaVPO₄F using V_2O_5 precursor is attributed to the good electrode surface integrity owing to negligible volume changes as confirmed by FESEM experiment.

Graphical Abstract

Keywords: Sodium-ion battery; fluorophosphate; vanadium precursor; long-term cycling; high-rate performance.

Download English Version:

https://daneshyari.com/en/article/5453674

Download Persian Version:

https://daneshyari.com/article/5453674

Daneshyari.com