Accepted Manuscript

Reductive precipitation of neptunium on iron surfaces under anaerobic conditions

H. Yang, D. Cui, D. Grolimund, V.V. Rondinella, R. Brütsch, M. Amme, C. Kutahyali, A.T. Wiss, A. Puranen, K. Spahiu

PII: S0022-3115(17)30031-4

DOI: 10.1016/j.jnucmat.2017.07.051

Reference: NUMA 50423

To appear in: Journal of Nuclear Materials

Received Date: 4 February 2017

Revised Date: 17 May 2017 Accepted Date: 26 July 2017

Please cite this article as: H. Yang, D. Cui, D. Grolimund, V.V. Rondinella, R. Brütsch, M. Amme, C. Kutahyali, A.T. Wiss, A. Puranen, K. Spahiu, Reductive precipitation of neptunium on iron surfaces under anaerobic conditions, *Journal of Nuclear Materials* (2017), doi: 10.1016/j.jnucmat.2017.07.051.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Reductive precipitation of neptunium on iron surfaces under
2	anaerobic conditions
3	11 N 1 D C :*1.2.3 D C 1: 1*4 N N D 1: 11.5 D D :: 14 N A 5 C
4 5	H. Yang ¹ , D. Cui* ^{1,2,3} , D. Grolimund* ⁴ , V.V.Rondinella ⁵ , R. Brütsch ⁴ , M. Amme ⁵ , C. Kutahyali ⁵ , A. T. Wiss ⁵ , A. Puranen ² and K. Spahiu ⁶
<i>5</i>	Kutanyan ', A. 1. Wiss , A. Puranen and K. Spamu
7	¹ China Institute of Atomic Energy, Beijing 102413, China
8	² Studsvik Nuclear AB, 61182 Nykoping, Sweden
9	³ Stockholm University, Department of Materials and Environmental Chemistry, SE-106 91
10 11	Stockholm, Sweden ⁴ Paul Scherrer Institut, CH 5232 Villigen PSI, Switzerland
12	⁵ European Commission, Joint Research Centre, Directorate Nuclear Safety and Security, 76125
13	Karlsruhe, Germany
14	^{6.} SKB, SE-10240 Stockholm, Sweden
15	
16 17	*Authors equally contributed for correspondence (E-mail: daqing.cui@studsvik.se;
18	daniel grolimund@psi.ch)
19	Currently at Ege University, Institute of Nuclear Science, 35100, Turkey
	entremity at 2ge emitterenty, montant of italiant, refres, runney
20	
21	Keywords: nuclear waste, neptunium, iron canister materials, disposal,
22	reductive precipitation
22	Abstract
23 24	Reductive precipitation of the radiotoxic nuclide ²³⁷ Np from nuclear waste on the
25	surface of iron canister material at simulated deep repository conditions was
26	investigated. Pristine polished as well as pre-corroded iron specimens were interacted in
27	a deoxygenated solution containing 10-100 µM Np(V), with 10 mM NaCl and 2 mM
28	NaHCO ₃ as background electrolytes. The reactivity of each of the two different systems
29	was investigated by analyzing the temporal evolution of the Np concentration in the
30	reservoir. It was observed that pre-oxidized iron specimen with a 40µm Fe ₃ O ₄ corrosion
31 32	layer are considerably more reactive regarding the reduction and immobilization of aqueous Np(V) as compared to pristine polished Fe ⁽⁰⁾ surfaces. ²³⁷ Np immobilized by
33	the reactive iron surfaces was characterized by scanning electron microscopy as well as
34	synchrotron-based micro-X-ray fluorescence and X-ray absorption spectroscopy. At the
35	end of experiments, a 5-8 µm thick Np-rich layer was observed to be formed ontop of
36	the Fe ₃ O ₄ corrosion layer on the iron specimen. The findings from this work are
37	significant in the context of performance assessments of deep geologic repositories
38	using iron as HLW canister material and are of relevance regarding removing pollutants
39 40	from contaminated soil or groundwater aquifer systems.
4 0 41	1. Introduction
42	1. Introduction
43	Nuclear energy can play an important role as a sustainable energy source and in
44	alleviating the risk of global climate change ¹ . However, the safe disposal of high level
45	radioactive waste (HLW), including spent nuclear fuel (SNF) and glass waste from the
46	nuclear power industry, is still a worldwide challenge. Several aspects need to be
47	investigated in more detail in order to reduce uncertainties associated with proposed

Download English Version:

https://daneshyari.com/en/article/5453798

Download Persian Version:

https://daneshyari.com/article/5453798

<u>Daneshyari.com</u>