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A B S T R A C T

For any quantitative study on microstructure of a product phase, information on the parent orientation and
orientation relationship is essential, yet it is often lost after phase transformation. Even a numerical approach to
the problem was proposed elsewhere, a description of the method used for numerical fitting, its efficiency and
accuracy has not been reported so far. Here, we address in details the use of Newton's method as one of the
fastest convergence techniques for least squares fitting of parent orientation and orientation relationship from
EBSD data of the product phase. A robust algorithm with high precision is proposed in a form convenient for
programming. Calculation errors, which are evaluated by a novel approach based on simulation of the daughter
orientations, are 0.02° for parent orientation and 0.06° for orientation relationship.

1. Introduction

In many alloy systems, phase transformation occurs in a cooperative
manner, in which a stable orientation relationship (OR) exists between
the parent and product phases. Hence, information on the parent or-
ientation (PO) and OR is essential for a quantitative study on crystal-
lography or morphology of the product phase [1–7]. Recent studies
have reported that the microstructure of parent phase affects variant
selection and texture in the product phase [2–6], and the OR not only
affects morphology of the product phase [7–8] but also controls kinetics
of interphase precipitation of carbide in steel [8]. However, information
on PO and OR is not readily available in a majority of ferrous alloys,
because transformation of the parent phase often completes near room
temperature.

In recent decade, several researchers have proposed different
methods for finding PO and/or OR indirectly from orientations of the
product phase. Their approaches can be classified into three main
groups:

1) Averaging approach [9–12]
2) Analytical approach [13–14]
3) Least squares approach [15–17]

The averaging approach was firstly proposed by Humbert [9] for
calculation of PO by using a known OR. It involved finding for each
daughter orientation a set of parent variants, which would be obtained

from the former by a virtual reverse transformation. The mean PO
therefore was obtained by averaging orientations of the dominant re-
versed POs using quaternion algebra. This approach was widely
adopted by many researchers since its principle was simple. However, it
only allowed approximation of the PO and the solution was sensitive to
the choice of initial PO and OR.

Latterly, the analytical approach was introduced by Humbert [13]
as a further improvement of the averaging approach for refinement of
both PO and OR. It was based on an analytical hypothesis that the best
OR should minimize mean distance among the reversely calculated
POs. The hypothesis led to an optimization problem involving Lagrange
multipliers, which could be solved analytically. Because all the constant
coefficients of the function to be optimized were predefined from the
choice of initial PO and OR, the solution might also be sensitive on
those initial values.

Least squares approach was firstly reported by Miyamoto [16] for
determination of both PO and OR from orientations of martensite or
bainite in steel. The main idea was least squares fitting of a model of
daughter variants to a set of measured daughter orientations, which
were inherited from one parent grain. In this approach, the mean PO
and OR are reached by the best fit between the model of daughter
variants and the measured daughter orientations. The least squares
approach is flexible, since the parameters of the objective function can
be refined during iteration steps. By this way, the obtained results are
less dependent on the initial condition. However, a detailed description
of the method used for least squares fitting of PO and/or OR has not
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been addressed by any author so far. Consequently, for many re-
searchers the approach is difficult to reproduce, especially for those
who are not familiar with non-linear multivariable optimization.

In nonlinear multivariable optimization, it is important to choose a
proper objective function and an efficient and robust method to achieve
the solution. Newton's method is one of the fastest convergence tech-
niques for numerical fitting, since it converges on the root quad-
ratically. Near a root, the number of significant digits approximately
doubles with each step, so it is also often used to “polish” a root ob-
tained by other methods [18]. Unfortunately, Newton's method requires
calculation of secondary derivatives of the objective, which are often
unaffordable analytically if the objective is not rationally chosen and
simplified.

In this paper, we demonstrate the use of Newton's method for least
squares fitting of PO and OR from daughter orientations.
Implementation of the method for convenience of programming, effi-
ciency of computation and factors affecting the solution will be ad-
dressed in details based on a practical application on steel.
Furthermore, a novel approach to evaluate accuracy of the calculation
method through simulation of daughter orientations from a standard
PO and a well-known OR is also discussed.

2. Calculation Method

For a coherent phase transformation, the orientation of inherited
daughter variant is related to the parent orientation by a certain OR as
follows [13]:

= ∆g D g P g. . .v
j i oi (1)

where gvi and g0 are orientation matrices of the daughter variant and PO
respectively. Pi and Dj are among the rotational symmetry matrices of
the parent and inherited phases, respectively. Δg is the OR which de-
scribes the rotation of parent crystal frame relative to the daughter
frame. The number of daughter variants is determined by the parent
and daughter crystals symmetries and the OR between them. The topic
has been discussed extensively by Cayron in the Ref. [19]. In case of
martensitic transformation in steel, the Kurdjumov-Sachs OR has 24
variants of daughter orientations, while the Nishiyama-Wasserman OR
has only 12 variants.

Now suppose we have a selected area of inherited phase, which
contains N experimentally measured orientations in matrix
expression gl , l=1−N. In order to find go andΔg, the model of
daughter variants gvi is numerically fitted to the measured orientations
gl by minimizing an objective function, which represents the sum of
squared distance between them. The form of objective function depends
on the choice of distance function or metric between three-dimensional
(3D) orientations. A study has proved that either the rotation angle
between two orientations as a geodesic distance on the unit sphere or
the Euclidean distance between two unitary quaternions representing
the 3D orientations, can be used for this purpose, since those two
quantities are equivalent metrics [20].

In this calculation, we used the rotation angle as a metric for
building of the objective function. For each measured daughter or-
ientation gl, a pair of symmetry matrices Pn(l) ,Dm(l) is found so that the
disorientation matrix Ol=(Dm(l) .Δg .Pn(l) .go) .gl−1 returns a minimum
rotation angle θl defined by:

= −Oθ Trcos( ) 1
2

[ ( ) 1 ]l l (2)

where Tr( Ol) is the trace of Ol. When θl is within a limit of deviation ϑ
(θl≤ϑ) we say that the measured orientation gl is indexed by the
variant number v(l), since it is found closest to the daughter variant v(l)
determined by Pn(l) and Δg.

The objective function for least squares optimization is therefore
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Note that ∼N is number of measured daughter orientations (gl),
which satisfy the OR (Δg) with the parent (go) within a limit of de-
viation ϑ (θl≤ϑ). Obviously, ∼N is equal or less than N and it may
change after each iteration step. Under the condition that ϑ is chosen
sufficiently small (ϑ≤15°), cos(θl) can be quadratically approximated
by Taylor series:
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Using (2) and (4) the objective function in (3) is simplified:

∑ ∑∆ = − = − →∼ ∼

∼
∼

g g Of
N

cos θ
N

Tr min( , )
1 2(1 ( )) 3 1 ( )o

N

l
N

l
1

1 (5)

The objective function using (1−cos(θl)) instead of θl2 is chosen for
a sole reason to keep derivations and calculations simple as demon-
strated later. It is reasonable to assume that the difference O(θl4) can be
neglected, as all involved angles are relatively small (ϑ≤15°). This
assumption also implies that a proper initialization is generally required
to guarantee small angles right from the start. This point will be elu-
cidated in section 3.

In a previous work [17], we had proposed a strategy to reduce
computational work by fitting go and Δg separately. It was done by
initially using a knownΔg, for example the Kurdjumov-Sach (K-S) OR in
case of steel then solving Eq. (5) numerically to find go. Later, Δg is
refined with a fix of go, which has been found in the previous step. The
refined ORs calculated in a number of parent grains for a given steel are
close each other within a deviation of< 0.5° [21]. Therefore, the re-
fined ORs can be used as initial value in any further calculation for the
materials of similar composition.

With a fixed Δg the objective function in (5) becomes a function of
three variables φ=(φ1,Φ,φ2)T, which are three Euler angles in Bunge
notation for description of the parent orientation ( go). Analytical ex-
pression for go as a function of φ is
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where s1 ,c1 , s ,c , s2 ,c2 are the shorten forms of sine and cosine of
φ1 ,Φ ,φ2 respectively.

The cyclic property of the trace of a matrix product, Tr(A .B .C)=Tr
(C .A .B) for any set of 3 × 3 matrices A, B and C allows us to derive a
final form of the objective function in case of a fixed Δg:
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( ) ( ) is a 3 × 3 matrix. Note that
−M is not a function of φ, but it is not a true constant throughout the
optimization process. If the initial guess of go is far from the solution,
the parameters ∼N D, m l( ) and Pn(l) for definition of −M may change as
orientations of the model variants gvi are affected appreciably by update
of go on early iteration steps.

For least squares fitting of OR (Δg), a similar objective function as in
Eq. (7a) can be obtained by fixing the PO (go). In that case the objective
function will be

−∆ = − ∆ →∆g M gf Tr min( ) 3 ( . )g (7b)
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Those optimization problems can be solved numerically by appli-

cation of Newton's method, which is detailed in the appendix A.
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