Accepted Manuscript

Nickel-aluminum diffusion: A study of evolution of microstructure and phase

Hossein Alimadadi, Cecilía Kjartansdóttir, Andrew Burrows, Takeshi Kasama, Per Møller

PII:	S1044-5803(17)31057-4
DOI:	doi: 10.1016/j.matchar.2017.05.039
Reference:	MTL 8700
To appear in:	Materials Characterization
Received date:	12 April 2017
Revised date:	###REVISEDDATE###
Accepted date:	31 May 2017

Please cite this article as: Hossein Alimadadi, Cecilía Kjartansdóttir, Andrew Burrows, Takeshi Kasama, Per Møller, Nickel-aluminum diffusion: A study of evolution of microstructure and phase, *Materials Characterization* (2017), doi: 10.1016/j.matchar.2017.05.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nickel-Aluminum diffusion; A study of evolution of microstructure and phase

Hossein Alimadadi^{1,†}, Cecilía Kjartansdóttir², Andrew Burrows¹, Takeshi Kasama¹ and Per Møller² ¹Technical University of Denmark, Center for Electron Nanoscopy, Fysikvej, building 307, DK– 2800 Kongens Lyngby, Denmark.

²Technical University of Denmark, Department of Mechanical Engineering, Produktionstorvet, building 425, DK – 2800 Kongens Lyngby, Denmark.

† Corresponding Author, E-Mail: hoal@cen.dtu.dk, Tel.: +45 45256494

Keywords: Diffusion; Kirkendall effect; Intermetallics; Aluminum-Nickel binary alloys; Grain boundary diffusion; Electron microscopy

Abstract:

Microstructural and phase evolution of an aluminum deposit on nickel, after heat treatment at 883 K, is studied by means of various microscopy techniques, i.e. energy dispersive X-ray spectroscopy, backscattered electron imaging, electron backscatter diffraction, ion channeling contrast imaging and scanning transmission electron microscopy. AlNi₃ crystallites are observed on the aluminum grain boundaries after only 3 min. of heat treatment indicating that nickel and nickel rich phases are the initially diffusing and forming species. Heat treatment for 120 min. or longer results in the formation of Al₃Ni₂ and a porous Al₃Ni₂/ γ -Al₂O₃ structure at the surface. The Al₃Ni₂ layer is composed of two different grain morphologies, indicating the position of a Kirkendall plane, and hence, there is a high diffusion rate of aluminum in this phase.

Download English Version:

https://daneshyari.com/en/article/5454696

Download Persian Version:

https://daneshyari.com/article/5454696

Daneshyari.com