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A B S T R A C T

An image processing method has been developed to characterize the macrosegregation on cross-sections of
castings produced from eutectic alloys. The method utilizes a combination of image segmentation, pixel-to-pixel
analysis and tessellation techniques to construct a quantitative map of the solute distribution over large samples.
Compared with methods reported previously in the literature, the current method is robust and can be applied to
samples with large irregular cross-sections. The accuracy and validity of the method has been assessed through a
series of artificially designed micrographs. An example application to an A356 aluminum alloy sample casting
with irregular cross-section is presented.

1. Introduction

During the solidification of multicomponent alloys, solute redis-
tribution, occurring due to bulk and diffusional transport phenomena,
can result in a defect called macrosegregation [1]. Macrosegregation
occurs when the alloying elements are transported over length scales
larger than the grain size [1]. This causes depletion or enrichment in
solute levels within the casting. These changes in composition lead to
variation in the microstructure and the mechanical properties within
the casting. Since this phenomenon was first reported, many techniques
have been devised to visualize the redistribution of solute at the macro-
scale in order to study it. Traditionally, methods based on metallo-
graphy have been used to assess segregation at the scale of the casting
based on variations in the phase content. Unfortunately, these methods
do not necessarily yield quantitative results suitable for numerical
model validation. On the other hand, quantitative methods like EDX
microprobe analysis are only capable of quantifying macrosegregation
in small areas or volumes. The difficulty lies in the limited number of
samples that can be taken from large cross-sections to create a
segregation map [2]. This issue is especially prominent when experi-
mental data from a large sample is being acquired, where a high level of
accuracy is required [3,4].

The method proposed in this paper is able to overcome this issue by
automatically creating an optimal map of segregation from a montage
of optical images. This approach first utilizes a tessellation map
overlaid on the image montage. Then, using a pixel-to-pixel analysis,
the area fraction of the desired phase is calculated in each element. It
should be noted that the spatial variation of segregation in contour
maps is strongly dependent upon the number of 2D elements used to

evaluate the area fraction. For small numbers of elements, the
generated contour map represents the area average of the desired
phase across large areas and is therefore quite coarse. An increase in the
number of elements reduces the size of each element to the point where
each element may contain only one microstructural phase. In this case,
the measured area fraction becomes a binary representation because it
is either completely filled with one phase or not. Thus, a method called
the Average Maximum Difference (AMD) has been developed to
determine the optimal number of elements to accurately represent the
spatial variation of segregation. After application of the AMD method, a
contour map of segregation is generated. This work describes the AMD
method before using artificial microstructures to assess it and provides
an demonstration of its application to a casting.

2. Methodology

2.1. Analysis Procedure

The initial step to analyze the spatial variation of segregation in a
sample is to construct an image montage of the microstructure over the
entire area that is to be analyzed. This can be done through different
techniques, the most common one being optical microscopy. In order to
prepare a montage, the cross-sectional area must first be polished.
Then, a sequence of images of the microstructure covering the entire
surface of the sample cross-section should be acquired. Before con-
structing a montage, these images should be segmented into the desired
phases. Several methods can be utilized to segment the images, such as
the Gaussian Mixture Model, K-means and Markov Random Fields [5].
Although these methods are quite accurate, when it comes to a large set
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of images, they are not time-efficient [5]. The recommended method in
this case is to use Otsu thresholding, then implement appropriate
morphologies to eliminate the “salt and pepper” noise in images [5].
Fig. 1 shows a montage image of an A356 casting after segmentation,
composed of ∼6000 images.

In the second step, a tessellation map is overlaid on the montage in
order to create a segregation map.1 However, the final segregation map
is sensitive to the mesh size. The optimal mesh size for the tessellation is
determined by calculating a quantity referred to as the Average
Maximum Difference (AMD) using a simple algorithm.2 In this algo-
rithm, the difference between the area fraction of the phase of interest
in an element with its nearby elements using a specified kernel is first
calculated. A kernel in this case is a square matrix centering around an
element. The area fraction in each element calculated by counting the
number of pixels of the desired phase and then dividing by the total
number of non-black pixels (Eq. (1)).
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The maximum difference of each element with its neighbours is then
determined by calculating the difference of the area fraction of each
element with its adjacent elements (Eq. (2)) and selecting the maximum
value (Eq. (3)).
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Fig. 2 shows an element and its adjacent elements with three
different kernels superimposed on them. A kernel with a width smaller
than mesh size will only capture the element itself. On the other hand a
kernel with a width larger or equal to the mesh size will capture three
or more elements. In this research, a kernel with a width of 1.2 times
the mesh size has been chosen. This is the smallest kernel that captures
all the adjacent elements, while ensuring that only the adjacent
elements are picked. Applying this process to the entire image, the
maximum differences of each element and its neighbours are calcu-
lated. These maximum differences represent how sharply the area
fraction is changing with respect to the neighbouring cells. By
calculating the average of these values over the whole image, a single
value, called the AMD, representing the overall change in the gradient
can be calculated (Eq. (4)). This process can be repeated for different
tessellations. The optimal mesh size to evaluate the spatial gradient of a
sample is achieved when the calculated AMD is a minimum (Eq. (5)).
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where Nh is the number of elements in the mesh with spacing h,
andAMDi

h is the Average Maximum Difference of mesh with spacing h.
The subscripts opt, l and f for h, indicate the optimal mesh size, the
lower bound for mesh size and the higher bound mesh size for AMD
analysis.

After the optimization stage, the image is divided into small
triangular sections based on the determined mesh size. Subsequently,
the area fraction of the desired phase is determined in each triangular
section. The data then gets written into an input file for the Tecplot360
visualization software,3 which can be used to visualize and further
analyze the segregation map.

2.2. Artificial Microstructure

In order to assess this technique, a series of carefully designed,
artificial microstructure images were generated and analyzed using the
AMD method. To construct images with the area fraction changing in
1D, a python code was used to generate a number of thin rectangular
images with constant area fraction. This was done by first initializing
the matrix of values representing the image section with zeros and then
populating the matrix with ones at random positions until the ratio of
the number of ones to the total number of pixels met the criteria of the
desired area fraction. The rectangular regions were then joined together
to create a square region with a known gradient in area fraction. The
same method has been used to create images with 2D area fraction

Fig. 1. An image montage of the microstructure in an A356 casting. Light and dark
grayscales represent primary aluminum and eutectic phases, respectively, and black
regions in the casting represent pores.

Fig. 2. An element with its neighbouring elements. Red boxes indicate the kernels
overlaid on the mesh with three different sizes, where h indicates the mesh size. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

1 Python package is available on Github: https://github.com/wildthingz/
MakeContour.

2 Python package is available on Github: https://github.com/wildthingz/pyAMD. 3 Tecplot360 website: http://www.tecplot.com/products/tecplot-_360/.
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