
Author's Accepted Manuscript

Microstructure and mechanical behaviors of $Gd_xCoCrCuFeNi$ high-entropy alloys

L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, Z. Zhou, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu

www.elsevier.com/locate/msea

PII: S0921-5093(17)31271-6

DOI: http://dx.doi.org/10.1016/j.msea.2017.09.102

Reference: MSA35569

To appear in: Materials Science & Engineering A

Received date: 26 July 2017 Revised date: 11 August 2017 Accepted date: 21 September 2017

Cite this article as: L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, Z. Zhou, M.Z. Ma, P.K. Liaw, G. Li and R.P. Liu, Microstructure and mechanical behaviors of Gd_xCoCrCuFeNi high-entropy alloys, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2017.09.102

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microstructure and mechanical behaviors of Gd_xCoCrCuFeNi high-entropy alloys

L. J. Zhang 1 , P. F. Yu 1 , M. D. Zhang 1 , D. J. Liu 1 , Z. Zhou 1 , M. Z. Ma 1 , P. K. Liaw 2 , G. Li $^{1.2*}$, and R. P. Liu 1*

Abstract

A new series of $Gd_xCoCrCuFeNi$ (x = 0, 0.05, 0.1, 0.2, and 0.3) high entropy alloys were synthesized to investigate alloying effects of the rare-earth element, Gd, on the microstructure and mechanical behaviors. Microstructures of these alloys were examined using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and the phase evolution was characterized and compared using the previous criteria. It was found that the microstructure changes from the face-centered cubic matrix plus Cu-rich face-centered cubic phase to face-centered cubic matrix plus hexagonal structure phase (CaCu₅ type) with the addition of Gd. The volume fraction of the hexagonal structure phase increases with increasing the Gd content, which is mainly responsible for the increment in the Vickers hardness, yield and fracture strength. Nanoindentation measurements show that the hexagonal structure phase is harder. Furthermore, the dislocation nucleation of the face-centered cubic and hexagonal structure phases was probed by measuring the first pop-in behavior in the load-displacement curve. With the increase of Gd, the series of Gd_xCoCrCuFeNi high entropy alloys show different fracture and strengthening

¹State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

²Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA

^{*}G. Li: email gli25@utk.edu; gongli@ysu.edu.cn; *R. P. Liu: email riping@ysu.edu.cn

Download English Version:

https://daneshyari.com/en/article/5455281

Download Persian Version:

https://daneshyari.com/article/5455281

<u>Daneshyari.com</u>