
Author's Accepted Manuscript

STABILITY OF GRAIN-REFINED REVERSED STRUCTURES IN A 301LN AUSTENITIC STAINLESS STEEL UNDER CYCLIC LOADING

Antti Järvenpää, Matias Jaskari, Jiri Man, L. Pentti Karjalainen

www.elsevier.com/locate/msea

PII: S0921-5093(17)30929-2

DOI: http://dx.doi.org/10.1016/j.msea.2017.07.033

Reference: MSA35281

To appear in: Materials Science & Engineering A

Received date: 18 April 2017 Revised date: 11 July 2017 Accepted date: 14 July 2017

Cite this article as: Antti Järvenpää, Matias Jaskari, Jiri Man and L. Pentt Karjalainen, STABILITY OF GRAIN-REFINED REVERSED STRUCTURES IN A 301LN AUSTENITIC STAINLESS STEEL UNDER CYCLIC L O A D I N G , *Materials Science & Engineering A* http://dx.doi.org/10.1016/j.msea.2017.07.033

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

STABILITY OF GRAIN-REFINED REVERSED STRUCTURES IN A 301LN AUSTENITIC STAINLESS STEEL UNDER CYCLIC LOADING

Antti JÄRVENPÄÄ^a, Matias JASKARI^a, Jiri MAN^b, L. Pentti KARJALAINEN^c ^aUNIVERSITY OF OULU, Oulu Southern Institute, Pajatie 5, FI-85500 Nivala, Finland, ^bINSTITUTE OF PHYSICS OF MATERIALS ASCR, Žižkova 22, 616 62 Brno, Czech Republic, ^cUNIVERSITY OF OULU, Centre for Advanced Steels Research, P.O. Box 4200, FI-90014 Oulu, Finland, antti.jarvenpaa@oulu.fi matias.jaskari@oulu.fi man@ipm.cz pentti.karjalainen@oulu.fi

Abstract

Austenite stability against the deformation induced α '-martensite (DIM) formation and the cyclic deformation behavior of grain-refined structures with the grain size between 13-0.6 um under fatigue loading were investigated in a 301LN Cr-Ni austenitic stainless steel. The DIM transformation in the course of cycling at constant total strain amplitudes of 0.4% and 0.6% was recorded by magnetic measurements and microstructures examined by electron backscatter diffraction and X-ray diffraction. The cyclic deformation behavior was followed by the evolution of the stress amplitude. The results evidenced that the austenite stability increases with the decreasing average grain size down to about one micrometer, obtained in annealing at 900°C for 1 s. On the contrary, the stability decreases drastically in the submicron, non-homogeneous grain structures created at the lower temperatures of 800–700°C. In these structures, submicron grains seem to be stable, and the precipitation of CrN is considered to contribute to the reduced stability of grains with a few-micron-size present among submicron grains. Under cyclic loading, the level of initial stress amplitude varied considerably in dependence on the refined austenite grain size. At the 0.6% strain amplitude, the initial softening was followed by cyclic hardening. The level of the final stress amplitude was related to the fraction of DIM formed during cycling straining.

Keywords: austenitic stainless steel, reversion treatment, grain size, strain-controlled fatigue, deformation induced martensite transformation, cyclic behavior

1. INTRODUCTION

The stability of austenite phase during plastic deformation plays a significant role in various steels as regards as their strength and ductility. The deformation-induced transformation of austenite to martensite, the transformation-induced plasticity (TRIP) effect, can be utilized in modern carbon steels as well in metastable austenitic stainless steels, e.g. [1–4]. The austenite stability is mainly influenced by the chemical composition and temperature, but also by other microstructural factors such as crystallographic orientation, defect density, surrounding phases, and grain size (GS), e.g. [4, 5].

Stainless steels can be used in automotive industry to reduce weight and cost in the manufacture of motor vehicles and to improve safety and sustainability in automotive body structures, for instance in bus structures, tank trucks and trailers, etc. In moving vehicles fatigue strength becomes important in addition to static one. New nano-

Download English Version:

https://daneshyari.com/en/article/5455324

Download Persian Version:

https://daneshyari.com/article/5455324

Daneshyari.com