
Author's Accepted Manuscript

Dislocation versus grain boundary strengthening in SPD processed metals: non-causal relation between grain size and strength of deformed polycrystals

M.J. Starink

www.elsevier.com/locate/msea

PII: S0921-5093(17)31089-4

DOI: http://dx.doi.org/10.1016/j.msea.2017.08.069

Reference: MSA35417

To appear in: Materials Science & Engineering A

Received date: 24 July 2017 Revised date: 15 August 2017 Accepted date: 17 August 2017

Cite this article as: M.J. Starink, Dislocation versus grain boundary strengthening in SPD processed metals: non-causal relation between grain size and strength of deformed polycrystals, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2017.08.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Dislocation versus grain boundary strengthening in SPD processed metals: non-causal relation between grain size and strength of deformed polycrystals

M.J.Starink

Materials Research Group, Faculty of Engineering and the Environment,
University of Southampton, Southampton SO17 1BJ, UK

Abstract:

In metals that are heavily cold deformed, for instance by a severe plastic deformation process, significant strengthening is caused by the high density of defects such as grain boundaries and dislocations. In this work a model for volume-averaged dislocation and grain boundary (GB) creation is used to show that unless significant annihilation of defects post deformation occurs, the dislocation densities and GB densities in the deformed material are closely correlated. The dislocation strengthening effect thus shows a strong correlation with GB strengthening, and correlation of strength or hardness with $d^{1/2}$, where d is the grains size, as in a Hall-Petch type plot, can not be taken as an indication that GB strengthening dominates. Instead, in many SPD processed metals and alloys, dislocation strengthening is the dominant strengthening effect, even though a Hall-Petch type plot shows a good linear correlation.

Key words: Severe Plastic Deformation (SPD), dislocations, recovery, hardness, grain size

1. Introduction

Severe plastic deformation (SPD) has attracted wide attention as a means of improving properties of metals and alloys, and especially improvements in strength have been

Download English Version:

https://daneshyari.com/en/article/5455363

Download Persian Version:

https://daneshyari.com/article/5455363

<u>Daneshyari.com</u>