
Quantum-dot cellular automata serial decimal processing-in-wire: Run-time
reconfigurable wiring approach

Michael Gladshtein
ORT Braude College, 51 Snunit st., Karmiel 2161002, Israel

a r t i c l e i n f o

Article history:
Received 7 April 2015
Received in revised form
12 April 2016
Accepted 20 July 2016

Keywords:
Quantum-dot cellular automata
Reconfigurable computing
Decimal adder/subtractor
Johnson–Mobius code

a b s t r a c t

The quantum-dot cellular automata (QCA) technology is promising to overcome the limits of CMOS
technology for perspective computers. A chain of QCA is used as a wire. Logic gates are simply im-
plemented by a cross pattern of QCA. Because the leading role of QCA wires, the serial data transfer/
processing is preferable. The growing market of financial, Internet-based, and automatic control com-
puter applications requires a binary-coded decimal data encoding for direct processing of decimal in-
formation without representation and conversion errors. The 5-bit decimal Johnson–Mobius encoding
and radical departure from Boolean logic allow using a delay element, implemented by short length of
QCA wire, as a function element. The previous published by author serial decimal QCA arithmetic designs
demonstrate hardware simplification in comparison with traditional designs. The paper presents novel
serial decimal adder and adder/subtractor designs used the run-time reconfigurable wiring approach,
which results in further significant QCA hardware simplification.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The CMOS is now the main technology for implementation of
microelectronic computers. All microelectronic computers use
binary notation and bit-parallel data transfer/processing. These
principles are optimal for microelectronic computers: the binary
number system, as it requires a smaller number of expensive
elements—transistors—and allows implementation of arithmetic
operations by logic gates; parallel data transfer/processing in-
creases the binary processor performance (but increases number
of wires and poses the binary carry propagation problem). Today
the CMOS technology is approaching to its physical limit according
to the scientific prediction [1].

The next stage in computer production is a nanoelectronic
technology. The possible nanoelectronic devices are summarized
in [2]. One of perspective nanoelectronic technologies is the
quantum-dot cellular automata (QCA) based technology. The no-
tion of QCA was introduced in 1993 [3]. The possible physical
implementations (metal tunnel junction QCA, molecular QCA, and
magnetic QCA) and experiments are reviewed in [4]. Despite the
several limitations (low working temperature for the metal tunnel
junction QCA, low switching speed for the magnetic QCA, etc.) the
QCA technology is considered as a future computer technology [5].
The clocked molecular QCA provide high density, high switching
speed, and ultralow power dissipation [6,7]. The design and fab-
rication aspects of clocked molecular QCA are discussed in [8].

A paradigm for computing with QCA is described in [9]. QCA
operates by the Coulombic interaction between neighbor cells.

Synchronization is provided by clocking in four phases. The signal
propagation through a QCA wire, built by a chain of cells, is similar
to the signal propagation through a conventional shift register.
Logic primitives are simply implemented with a cross pattern of
cells. The complete set of logic primitives includes an inverter and
three-input majority voter. Two-input logic AND and OR gates are
implemented from the majority voter by setting the third input
permanently to a “0” or “1” value.

The computational power of QCA memory circuits is based on
the memory-in-motion technique [10], and arithmetic circuits, on
processing-in-wire technique [11]. The report [12] summarizes
state-of-art of QCA arithmetic units design. The projects of ar-
ithmetic-logic unit [13] and simple 4-bit processor [14] have been
also published. However, all these designs use the fundamental
information principles inherited from microelectronic computers:
binary notation and parallel data transfer/processing. Because
these arithmetic designs are based on binary arithmetic, only lo-
gic-in-wire [15] technique is used as an instance of processing-in-
wire. The price ratio between switching elements and wires re-
verses in QCA nanotechnology. Wires become the main elements:
they contain more cells and have the longer propagation delay
[16,17].

The QCA combinational and sequential circuits design problems
(partitioning, placement, routing, floor-planning, etc.) are dis-
cussed in technical literature [18,19]. Several CAD tools are avail-
able for design and simulation of QCA circuits: QCADesigner [20],
QCAPro [21], QCA-LG [22], etc. The system-level simulation-based
researches drive the QCA nanotechnology forward [8], despite the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

http://dx.doi.org/10.1016/j.mejo.2016.07.009
0026-2692/& 2016 Elsevier Ltd. All rights reserved.

Microelectronics Journal 55 (2016) 152–161

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2016.07.009
http://dx.doi.org/10.1016/j.mejo.2016.07.009
http://dx.doi.org/10.1016/j.mejo.2016.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.07.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.07.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.07.009&domain=pdf
http://dx.doi.org/10.1016/j.mejo.2016.07.009


fabrication of complex QCA circuits is impossible today.
Besides, the application area of computers extends. Computers

process large volumes of decimal information in financial, com-
mercial, Internet-based, and automatic control applications, which
cannot tolerate errors from converting between decimal and bin-
ary formats [23]. Because of the growing importance of decimal
floating-point (DFP) arithmetic, specifications for it have been
added to the IEEE 754-2008 Standard for Floating-Point Arithmetic
[24]. Moreover, IBM added DFP instructions to the z9 and z10
microprocessors [25,26].

Presently, decimal arithmetic operations for fixed-point Binary
Coded Decimal (BCD) operands are supported by any binary gen-
eral purpose processor using decimal adjust instructions. This
approach is ineffective: a binary instruction and adjust instruction
must be executed for any decimal operation. Several QCA parallel
BCD adder designs have been published [27–29]; but they are less
effective in comparison with binary adders. More effective BCD
parallel CFA (carry flow adder) and CLA (carry lookahead adder)
are proposed in [30] but they also based on binary addition and
adjust principle. The biquinary coded decimal adder is published
in [31] but it also uses additional adjust operation. It follows that
further improvements are required in decimal coding, algorithm
concepts, and hardware design [32].

2. Author's previous research and further direction

2.1. First approach: direct serial decimal processing

As was shown by the author in [33], alternative principles
should be chosen for a nanocomputer implementation: serial data
transfer and processing (to decrease total length of wires) and direct
decimal processing (for elimination of decimal-binary and binary-
decimal conversions with their inevitable errors). Because the QCA
are inherently two-state, the last choice requires a binary-coded
decimal encoding, which meets the QCA properties. The main
criterion of an optimal encoding is arithmetic processing support
by shift operation. The additional criterions are arithmetic hard-
ware simplification and error detection.

A biquinary redundancy encoding for decimal digits allows
arithmetic hardware simplification by separate processing of a
binary and quinary components of the code as well as error de-
tection. The quinary component represented by the unitary or
unary code supports arithmetic processing by shift operation.

As was shown by the author [34], the 5-bit Johnson–Mobius
decimal code (JMC) presented in Table 1 is also a biquinary code.
The most significant bit (MSB) of the JMC represents its binary
component, and four lower bits represent its quinary component.
The last component is encoded in the direct (if MSB¼0) or in-
verted (if MSB¼1) 4-bit fixed-length unary code. Among other
possible decimal biquinary codes the JMC has the significant ad-
vantages: it includes only one additional bit in comparison with
the minimal BCD code and supports the simplest arithmetic pro-
cessing (counting) by twisted-ring rotation (the shift operation in a
Johnson counter). Moreover, inverting all of the bits in the decimal
JMC is equivalent to addition/subtraction 5. It follows that the
decimal JMC allows separate processing of its binary component
(by inverting all of the bits) and quinary component (by twisted-
ring rotating the code). Despite minor redundancy it presupposes
the error detection capability.

The QCA serial decimal JMC adder design [35] proved a possi-
bility of the decimal JMC addition implementation by using IN-
VERT (þ5) and LEFT TWISTED-RING ROTATE (þ1) operations. Two
variants of the serial decimal JMC subtractor, based on the de-
scribed above serial decimal adder, were designed on QCA [36].
The paper [37] reports on two variants of the serial decimal JMC

adder/subtractor designs and serial JMC change-of-level error
detector.

2.2. Second approach: delay-based processing-in-wire

In the delay-based nanocomputing approach suggested in
[38,39], computations are performed on values that are re-
presented by time measured as the delay between two events.
Such approach incorporates both switching delay and inter-
connection delay into the computation, no longer requiring the
specialized techniques to minimize the delays. The main operation
—addition—is performed by propagating the signal through pro-
grammable delay element implemented by a clocked QCA wire.
The delay can be programmed by choice the position where the
output is taken. The possible wire length limits the range of re-
presentable values. As it is concluded in the thesis [39], the delay-
based QCA computing devices are currently too large to compete
with their conventional counterparts and need to be optimized for
complexity and area.

As shown by the author [40], several serial binary-coded dec-
imal codes meet the delay-based computing requirements (10-bit
one-hot code, 9-bit unary code, biquinary codes used one-hot or
unary encoding for a quinary component). The 5-bit-serial decimal
JMC, by virtue of its unique properties, is the best one for im-
plementation of the QCA decimal delay-based processing-in-wire.
The main idea of delay-based JMC processing-in-wire implies that
if the serial JMC of decimal digit and its inverted copy are propa-
gating through a QCA wire, a 1 CLK delay (propagating through
four clock zones) performs a 1-bit left twisted-ring rotation of JMC
(increment operation).

The main building block for delay-based processing-in-wire—a
serial left barrel twisted-ring rotator (SLBTR)—can be built by a
Johnson counter and 5-to-1 multiplexer controlled by the parallel
shift amount one-hot code D. The Johnson counter can be simply
implemented by a loop of five 1 CLK delay elements (short pat-
terns of QCA wire), closed by an inverter. The needed delay is
implemented by the 5-to-1 multiplexer, which selects the appro-
priative point in the loop of delay elements in accordance with the
shift amount one-hot code D. The limited set of processing-in-wire
serial building blocks (bit flipper, left twisting-ring rotator, left
barrel twisting-ring rotator, 9's complementer, and multiplier by
5) makes it possible performing all of four arithmetic operations
[40].

2.3. Next direction: run-time reconfigurable wiring approach

A disadvantage of the described above main delay-based pro-
cessing-in-wire building block—SLBTR—is encoding the shift
amount code D by the parallel 5-bit one-hot code. This fact re-
quires complex processing of the second operand B serial JMC:
serial to parallel code conversion and conversion of the direct/

Table 1
Decimal Johnson–Mobius encoding.

Digit Johnson–Mobius code

0 0 0000
1 0 0001
2 0 0011
3 0 0111
4 0 1111
5 1 1111
6 1 1110
7 1 1100
8 1 1000
9 1 0000

M. Gladshtein / Microelectronics Journal 55 (2016) 152–161 153



Download English Version:

https://daneshyari.com/en/article/545552

Download Persian Version:

https://daneshyari.com/article/545552

Daneshyari.com

https://daneshyari.com/en/article/545552
https://daneshyari.com/article/545552
https://daneshyari.com

