
High-performance scalable architecture for modular multiplication
using a new digit-serial computation

Abdalhossein Rezai a,n, Parviz Keshavarzi b

a Academic Center for Education, Culture and Research (ACECR), Isfahan University of Technology (IUT) Branch, Isfahan 8415681167, Iran
b Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran

a r t i c l e i n f o

Article history:
Received 30 July 2015
Received in revised form
20 June 2016
Accepted 25 July 2016

Keywords:
Montgomery modular multiplication
Scalable architecture
Digit-serial computation
Public-key cryptography
Field-Programmable Gate Array (FPGA)
Application-Specified Integrated Circuit
(ASIC)

a b s t r a c t

Modular multiplication with a large modulus plays a vital role in many Public-Key Cryptosystems (PKCs)
such as RSA and Elliptic Curve Cryptosystem (ECC). Montgomery modular multiplication algorithm is an
efficient multiplication algorithm to simplify the quotient computation. The scalable architecture has
been employed to perform the Montgomery modular multiplication with any precision of the modulus.
This paper presents and evaluates a novel scalable modular multiplication algorithm/architecture with
variable-radix. The proposed algorithm/architecture, which is based on a new digit-serial computation
technique, parallelizes the data path to shorten the critical data path. It also reduces the complexity of
the high-radix partial multiplications to binary partial multiplications. In this paper, we present im-
plementation results on 0.18-mm ASIC technology, and on Xilinx Spartan 3, Virtex 2 and Virtex 6 FPGA.
The results demonstrate that the proposed algorithm/architecture has area� time complexity and per-
formance advantages compared to related algorithms/architectures.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modular multiplication with a large modulus has widely ap-
plications in cryptosystems such as Elliptic Curve Cryptosystem
(ECC) [1,2], and RSA [3–7]. So, computational methods which
simplify and accelerate the use of such operations are always of
great value for system security [5,8].

Montgomery Modular Multiplication (M3) algorithm [9] is one of
the most successful modular multiplication algorithms for computing
the large modular multiplication. This algorithm replaces the division
operation with a series of shift and addition operations, which are
simple for hardware implementation [5,8,10,11]. The challenging issues
in this algorithm are time-consuming carry propagations and using
fixed-precision of the operands in hardware implementations [12,13].

Several designs and techniques have been proposed to improve
the efficiency of the hardware implementation of the Montgomery
modular multiplication which could be classified into three cate-
gories: (1) Carry Save Adder (CSA) designs [8,14], (2) high-radix
designs [15–18], and (3) scalable design [7,12,13,19–36].

High-radix designs and CSA designs are well-known techniques
to relax the problem of time-consuming carry propagations in
hardware implementation of the Montgomery modular

multiplication algorithm [8]. Using the high-radix design, the
number of required clock cycles to complete the multiplication is
reduced at the expense of the critical path overhead [8]. The total
computation time in high-radix designs is also dependent on the
impact of the more complex production, addition of partial pro-
ducts and the complexity of the control logic for selection of
multiples of the multiplier operand [8].

To relax the problem of using fixed-precision of the operand,
Tenca and Koc [27] introduced a scalable (word-based) Montgomery
modular multiplication design, in which the modulus and multi-
plicand are processed word-by-word. The data path of scalable de-
signs can perform Montgomery modular multiplication with any
precision, and the precision of the operands is only limited by the
memory capacity [12]. Several improvements have been presented in
the literature, which show different accelerate performance of the
scalable Montgomery modular multiplication [7,19–26].

Tenca et al. extended scalable Montgomery modular multiplication
design [27] for several radixes [19,21,22]. They presented the im-
plementation results for radix-8 [19], radix-2 [21], and radix-4 [22]
scalable Montgomerymodular multiplication. They concluded that the
radix-4 scalable Montgomery always performed better than the radix-
2 and radix-8 scalable Montgomery modular multiplications. Fan et al.
[26] improved Tenca et al. design [19] to reduce the critical path using
a parallel of computation technique. Harris et al. [20] improved [21]
using left shift of partial products instead of right shift of multiplicand
and modulus in computation of intermediate results of radix-2 scal-
able Montgomery modular multiplication. Kelly and Harris [25]

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

http://dx.doi.org/10.1016/j.mejo.2016.07.012
0026-2692/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: rezaie@acecr.ac.ir, rezai560516@gmail.com (A. Rezai),

pkeshavarzi@semnan.ac.ir (P. Keshavarzi).

Microelectronics Journal 55 (2016) 169–178

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2016.07.012
http://dx.doi.org/10.1016/j.mejo.2016.07.012
http://dx.doi.org/10.1016/j.mejo.2016.07.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.07.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.07.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.07.012&domain=pdf
mailto:rezaie@acecr.ac.ir
mailto:rezai560516@gmail.com
mailto:pkeshavarzi@semnan.ac.ir
http://dx.doi.org/10.1016/j.mejo.2016.07.012

proposed very high-radix scalable Montgomery multiplier which re-
duces the latency. They also parallelized two multiplications within
each Processing Element (PE). Jiang and Harris [23] improved Kelly
and Harris design [25] using quotient pipelining. Pinckney and Harris
[24] developed a parallelized radix-4 scalable Montgomery modular
multiplication, which reduced PE cycle latency and critical path delay.
Ibrahim et al. [7] proposed a systematic methodology for exploring
possible processor array of scalable radix-4 Montgomery modular
multiplication algorithm. They also presented the implementation
results for scalable radix-8 architecture in GF(p) and GF(2n) in [13].

This paper presents and evaluates an efficient scalable Mon-
tgomery modular multiplication algorithm/architecture. The main
distinctive characteristics of our contribution are as follows:

1) Parallelize the data path and shorten the critical path in com-
parison with high-radix modular multiplication.

2) Achieve high-radix design with one clock cycle delay in data
flow.

3) Process three operands (the zero chain multiplications, the re-
quired additions, and nonzero digit multiplication) in one clock
cycle.

4) Support variable-precision and variable-radix modular multi-
plication feature.

5) Reduce the complexity of high-radix partial multiplication to
binary partial multiplication.

6) Present the results on 0.18-mm ASIC technology, and on FPGA.

The results show that the proposed scalable Montgomery
modular multiplication algorithm/architecture has the best per-
formance in comparison with other scalable Montgomery modular
multiplication algorithms/architectures and outperforms most of
them in terms of area� time complexity.

The remaining of this paper is organized as follows. Section 2
briefly describes background of the scalable modular multi-
plication algorithm. Section 3 presents the proposed scalable
modular multiplication. Section 4 provides in detailed hardware
implementation of the developed scalable modular multiplication,
and compares results to other architectures. Finally, paper is
concluded in Section 5.

2. Background

Montgomery modular multiplication algorithm [9] is a com-
mon used modular multiplication algorithm in cryptography ap-
plications because it can replace the trial division with shift and
addition operations [8,37–39]. The binary Montgomery modular
multiplication for n-bit inputs multiplier X, multiplicand Y and
modulus M is shown in Algorithm 1.

Algorithm 1. The binary Montgomery modular multiplication
algorithm

Input: X, Y, M;
Output: S(n)¼X.Y.R mod M;
1. S(0)¼0;
2. For i¼0 To n�1
3. qi¼(S(i)þxi.Y) mod 2;
4. S(iþ1)¼(S(i)þxiYþqi.M)/2;
5. End For
6. IF S(n)ZM Then S(n)¼S(n)�M;
7. Return S(n);

The output of this algorithm is S(n)¼X.Y.R mod M where S
(i) denotes S in the ith iteration, ∈ { }x 0, 1i represents the ith bit of
X, and R¼2�n mod M.

The direct hardware implementation of the Montgomery
modular multiplication can not support variable-precision multi-
plication feature [21,26]. Tenca and Koc [27] developed a scalable
version of the Montgomery modular multiplication to support
variable-precision multiplication feature. The binary scalable
(word-based) version of the Montgomery modular multiplication
is shown in Algorithm 2 [21].

Algorithm 2. The binary scalable Montgomery modular multi-
plication algorithm [21]

Input: X, Y, M;
Output: S¼X.Y.R mod M;
1. S¼0;
2. For i¼0 To n�1
3. (Ca, S(0)) ¼xi.Y(0)þS(0);

4. IF =()S 10
0 Then;

5. (Cb, S(0))¼S(0)þM(0);
6. For j¼0 To e
7. (Ca, S(j))¼Caþxi.Y(j)þS(j);
8. (Cb, S(j))¼CbþM(j)þS(j);

9. S(j-1)¼(()
− ⋯

(−)S S,j
w
j

0 1 1
1);

10. Else
11. For j¼0 To e
12. (Ca, S(j))¼Caþxi.Y(j)þS(j);

13. S(j-1)¼(()
− ⋯

(−)S S,j
w
j

0 1 1
1);

14. S(e)¼0
15. Return S;

In this algorithm, the n-bit multiplicand, modulus, and partial
results are split into w-bit words as = (…)(−) () ()Y Y Y Y0, , , ,e 1 1 0 ,

= (…)(−) () ()M M M M0, , , ,e 1 1 0 , and = (…)(−) () ()S S S S0, , , ,e 1 1 0
, where

the words are marked with superscripts and = +⎡⎢ ⎤⎥e n
w

1 denotes the

number of words in each operand. The n-bit multiplier is shown as
= (…)− −X x x x x, , , ,n n1 2 1 0 2 where the bits are marked with sub-

scripts. The total carry-out value generated per iteration corres-
ponds to CaþCb, which is in the range [0, 2]. This algorithm
computes a new partial results S for each bit of X, scanning the
words of the present Y, M, and S. Once Y is completely processed,
another bit of X is taken and the scan is repeated [21].

Hardware implementations of the binary scalable architectures
are quite simple, but they have difficulty in improving the hard-
ware area and efficiency. To achieve higher circuit efficiency, high-
radix architectures have been proposed. The high-radix scalable
version of the Montgomery modular multiplication is shown in
Algorithm 3 [27].

In this algorithm, =…
+M Mmod2d 0

d 1 and Booth recoding [40] is
utilized to compute qYi. This recoding technique is utilized to re-
duce the complexity of the multiplication in the hardware im-
plementation by reducing the Hamming weight of the multiplier
[27]. This algorithm computes a new partial results S for each digit
of X, scanning the words of the present Y, M and S. Once Y is
completely processed, another digit of X is taken and the scan is
repeated. In this algorithm, the number of required clock cycles is
reduced from n-clock cycle to n

d
-clock cycle for radix- 2d at the

expense of the critical path overhead.

A. Rezai, P. Keshavarzi / Microelectronics Journal 55 (2016) 169–178170

Download English Version:

https://daneshyari.com/en/article/545554

Download Persian Version:

https://daneshyari.com/article/545554

Daneshyari.com

https://daneshyari.com/en/article/545554
https://daneshyari.com/article/545554
https://daneshyari.com

