
Author's Accepted Manuscript

Effects of pre-strain on Cu-Mg co-clustering and mechanical behavior in a naturally aged Al-Cu-Mg alloy

Puyou Ying, Zhiyi Liu, Song Bai, Meng Liu, LiangHua Lin, Peng Xia, Linyan Xia

www.elsevier.com/locate/msea

PII: S0921-5093(17)30864-X

DOI: http://dx.doi.org/10.1016/j.msea.2017.06.097

Reference: MSA35235

To appear in: Materials Science & Engineering A

Received date: 20 March 2017 Revised date: 24 June 2017 Accepted date: 26 June 2017

Cite this article as: Puyou Ying, Zhiyi Liu, Song Bai, Meng Liu, LiangHua Lin Peng Xia and Linyan Xia, Effects of pre-strain on Cu-Mg co-clustering and mechanical behavior in a naturally aged Al-Cu-Mg alloy, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2017.06.097

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Effects of pre-strain on Cu-Mg co-clustering and mechanical behavior in a naturally aged Al-Cu-Mg alloy

Puyou Ying^{a,b}, Zhiyi Liu^{a,b,*}, Song Bai^{a,b}, Meng Liu^{a,b}, LiangHua Lin^{a,b}, Peng Xia^{a,b}, Linyan Xia^{a,b}

^a Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of

Education, Central South University, Changsha 410083, P.R. China

^b School of Material Science and Engineering, Central South University, Changsha

410083, P.R. China

*Corresponding Author: liuzhiyi@csu.edu.cn

Tel.: +86 731 88836011 Fax: +86 731 88876692

Abstract

Effects of pre-strain on Cu-Mg co-clusters and mechanical behavior in a naturally aged Al-Cu-Mg alloy were investigated by tensile and fatigue testing, transmission electron microscope (TEM) and atom probe tomography (APT) in present work. Results show that pre-strain contributes to increasing tension strength, not only by increasing dislocation density as previously recognized, but also through enhancing Cu/Mg ratio of Cu-Mg co-cluster and resultant critical shear stress for dislocation slip. Fatigue crack propagation (FCP) resistance is not degraded by further increasing pre-strain from 5% to 10%, in spite of a FCP resistance degradation when a pre-strain of 5% is initially applied. APT analysis indicates, comparing with 5% pre-strain, 10% pre-strain remarkably enhances Cu-Mg co-cluster size and Cu/Mg ratio during natural aging, which leads to a greater critical shear stress for dislocation slip. This undoubtedly enhances fatigue crack closure effect, and retards FCP resistance degradation when a greater pre-strain of 10% is applied.

Keywords: Pre-strain; Cu-Mg co-cluster; Mechanical behavior; Al-Cu-Mg alloy; Fatigue crack propagation.

1. Introduction

Al-Cu-Mg alloys have been widely used in aerospace areas due to their excellent combinations of moderate strength and good plasticity, especially employed in aircraft lower-wing panels [1-4]. Pre-strain is usually applied to relieve the residual stress which is induced by quenching. In this case, a mechanical property combination of high strength and low fatigue damage resistance can be created due to significant strain hardening led by pre-straining. This suggests pre-strain has a great effect on mechanical properties of age-hardened aluminum alloys.

Compared to the alloy without pre-strain, the pre-strained alloy possessed higher yield strength [5-7]. Specifically, Schijve's work [5] revealed that the FCP rate of AA2024-T3 plate was about twice as large as that without pre-strain. The observed increment in FCP rate was attributed to the small crack closure in pre-strained sample. For Al-Zn-Mg-Cu alloys, Al-Rubaie et al. [7,8] concluded that fatigue life and FCP resistance got worse with an increase of pre-strain level. In their work, an increase of pre-strain level had no considerable influence on fatigue region I and II, but it had a remarkable effect on fatigue region III [8]. Similarly, Froustey et al.'s [9] work on 2017A-T3 alloy revealed that an increase in pre-strain led to a large decrease in fatigue performance by promoting the formation of micro-cracks. Several studies [5,10] indicated that an increase in strength was accompanied by degrading fatigue damage resistance. The increasing

Download English Version:

https://daneshyari.com/en/article/545555

Download Persian Version:

https://daneshyari.com/article/545555

<u>Daneshyari.com</u>