
Author's Accepted Manuscript

High temperature deformation behavior of asproduced and retired 9–12% Cr power plant steel

Magdy M. El Rayes, Ehab A. El-Danaf

www.elsevier.com/locate/msea

PII: S0921-5093(17)30609-3

DOI: http://dx.doi.org/10.1016/j.msea.2017.05.014

Reference: MSA35030

To appear in: Materials Science & Engineering A

Received date: 28 December 2016

Revised date: 2 May 2017 Accepted date: 3 May 2017

Cite this article as: Magdy M. El Rayes and Ehab A. El-Danaf, High temperatur deformation behavior of as-produced and retired 9–12% Cr power plant steel *Materials Science & Engineering A* http://dx.doi.org/10.1016/j.msea.2017.05.014

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

High temperature deformation behavior of as-produced and retired

9-12% Cr power plant steel

Magdy M. El Rayes, Ehab A. El-Danaf *

Mechanical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia

*Corresponding author: edanaf@ksu.edu.sa

Abstract

This work aims to compare and analyze the high temperature behavior of as-received and retired 9-12% Cr steel, at high temperatures to elucidate the dominant deformation mechanism. The retired material was selected from retired shrouds used at the third stage of gas-turbine power plant which served for 30,000 hrs. at about 550-600°C (823–873°K). High temperature tensile testing in the range of 813 to 933 °K and different strain rates of 1x10⁻³ to 1x10⁻⁵ s⁻¹, were conducted on the two material conditions. The microstructural characterization showed that both microstructures were typical tempered martensite composed of large prior austenite grains containing martensite laths as well as occasional ferrite islands. EBSD was used to reveal grain characteristics for the two material conditions. The deformation was found to be controlled by low temperature climb. This was confirmed by the values of true activation energies which were close to 60% of lattice diffusion of ferrite for both material conditions. This inference was concealed by the presence of threshold stresses that initiated due to the interaction of dislocations with carbides. The data was consolidated using the Zener-Holloman parameter, for both material conditions, and a constitutive model was proposed based on the normalized effective stress.

Keywords: Martensitic steel; High temperature tensile test; Strain rate; Activation energy; Stress exponent.

1. Introduction

High temperature applications such that found in power plants for electrical energy generation, oil refineries and petrochemical industries share a common problem; namely ageing of its parts and its consequent degradation or even failure due to their prolonged high temperature- operation. Hence, in

Download English Version:

https://daneshyari.com/en/article/5455767

Download Persian Version:

https://daneshyari.com/article/5455767

Daneshyari.com