
Author's Accepted Manuscript

Dynamic compressive behaviour of weld joints

Thora E. Falkenreck, Maximilian Klein, Thomas Böllinghaus

www.elsevier.com/locate/msea

PII: S0921-5093(17)30927-9

DOI: http://dx.doi.org/10.1016/j.msea.2017.07.032

MSA35280 Reference:

To appear in: Materials Science & Engineering A

Received date: 19 April 2017 Revised date: 11 July 2017 Accepted date: 14 July 2017

Cite this article as: Thora E. Falkenreck, Maximilian Klein and Thoma Böllinghaus, Dynamic compressive behaviour of weld joints, Materials Science & Engineering A, http://dx.doi.org/10.1016/j.msea.2017.07.032

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain ACCEPTED MANUSCRIPT

Dynamic compressive behaviour of weld joints

Thora E. Falkenreck^{1,2}, Maximilian Klein¹, Thomas Böllinghaus²

¹Rheinmetall MAN Military Vehicles, Kassel, Germany

²BAM Bundesanstalt für Materialforschung und -Prüfung, Berlin, Germany

Thora.Falkenreck@rheinmetall.com

Thora.Falkenreck@bam.de

Maximilian. Klein @rheinmetall.com

Thomas.Boellinghaus@bam.de

Abstract

Materials used in military applications have to withstand multiple threats like ballistics and explosions. Thus,

high-strength low alloyed (HSLA) steels are used. The main joining technique for metals is welding. Therefore,

analysing the dynamic impact behaviour of high-strength welds is very important to fulfil these demands.

Investigation of welds at high strain rates has rarely been conducted in the past. To determine the dynamic impact

behaviour of hybrid laser-arc welds, the Split Hopkinson Pressure Bar (SHPB) technique was used. The base

material was a quenched and tempered fine-grained armour steel with yield strength of 1100 MPa.

First, a full hybrid laser-arc weld was investigated by extracting specimens consisting of weld metal and heat

affected base material. The influence of two variables, the cooling time between 800 °C and 500 °C (t_{8/5}) and

strength of filler material, on the impact behaviour was studied. The cooling time t_{8/5} was varied by preheating to

influence the microstructure in the HAZ and to analyse the effect on the hardness and dynamic compressive

strength.

Subsequent analysis to detail the original investigation was carried out by dilatometer heat treatment of specimens

to create homogenous subzones of the weld. These specimens have a homogenous microstructure of HAZ and were

tested by SHPB to determine the stress-strain characteristics for the different microstructures of HAZ.

The results of the weld specimen showed the effect of preheating and filler material strength on the dynamic

compressive behaviour. The analysis of the different microstructures of the HAZ indicated that especially the

tempered microstructure caused a reduction in dynamic compressive strength.

Keywords: SHPB; Hybrid laser-arc weld; armour steel; dilatometry

1

Download English Version:

https://daneshyari.com/en/article/5455844

Download Persian Version:

 $\underline{https://daneshyari.com/article/5455844}$

Daneshyari.com