
Author's Accepted Manuscript

Effect of coherent L1₂ nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy

Z.G. Wang, W. Zhou, L.M. Fu, J.F. Wang, R.C. Luo, X.C. Han, B. Chen, X.D. Wang

www.elsevier.com/locate/msea

PII: S0921-5093(17)30592-0

DOI: http://dx.doi.org/10.1016/j.msea.2017.04.111

Reference: MSA35012

To appear in: Materials Science & Engineering A

Cite this article as: Z.G. Wang, W. Zhou, L.M. Fu, J.F. Wang, R.C. Luo, X.C. Han, B. Chen and X.D. Wang, Effect of coherent L1₂ nanoprecipitates on th tensile behavior of a fcc-based high-entropy alloy, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2017.04.111

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Effect of coherent L1₂ nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy

Z.G. Wang, W. Zhou, L.M. Fu, J.F. Wang, R.C. Luo, X.C. Han, B. Chen, X.D. Wang*

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

*Corresponding author. xdwang77@sjtu.edu.cn (X.D. Wang).

Abstract

Effect of coherent L1₂ nanoprecipitates on the tensile behavior of a novel-designed Al_{0.2}CrFeCoNi₂Cu_{0.2} high-entropy alloy is investigated in this study. Different heat treatments after cold rolling were used to achieve the alloys with two different microstructures. One is composed of a fcc matrix and coherent L1₂ (Ni,Cu)₃Al nanoprecipitates after annealing at 700°C for 20h; the other owns a fcc single-phase structure after annealing at 800°C for 1h as reference. Furthermore, the two alloys have nearly identical average grain sizes (~4.5 um), and thus the exclusive effect of L1₂ nanoprecipitates could be identified by directly comparing their tensile behaviors. It is shown that the presence of L1₂ nanoprecipitates results in increases of 259 MPa and 316 MPa in the yield strength and ultimate tensile strength, respectively, accompanied by the maintenance of a high elongation (30.4%). This excellent strengthening effect is explained by the interaction between dislocations and L1₂ nanoprecipitates during the tensile straining process. Dislocation shearing of the L1₂ nanoprecipitates, which is evidently observed and also verified by the yield strength increment calculation, leads to predominant planar dislocation glide and the formation of crystallographically aligned slip bands as the main deformation mechanism, eventually resulting in a considerable work-hardening capacity enhancement with almost none harm to the elongation.

Keywords: High-entropy alloy, Precipitation-hardening, Work-hardening, Slip band

Download English Version:

https://daneshyari.com/en/article/5456040

Download Persian Version:

https://daneshyari.com/article/5456040

Daneshyari.com