
Author's Accepted Manuscript

Young's modulus and damping capacity of Ti₃Sn intermetallic compound with 1at.% and 3at.% of Zr and Al additions

Olga Ivanova, Olexandr Shcheretsky, Yuriy Podrezov, Myroslav Karpets

www.elsevier.com/locate/msea

PII: S0921-5093(16)31519-2

DOI: http://dx.doi.org/10.1016/j.msea.2016.12.030

Reference: MSA34461

To appear in: *Materials Science & Engineering A*

Received date: 21 October 2016 Revised date: 6 December 2016 Accepted date: 7 December 2016

Cite this article as: Olga Ivanova, Olexandr Shcheretsky, Yuriy Podrezov and Myroslav Karpets, Young's modulus and damping capacity of Ti₃Sn intermetalli compound with 1at.% and 3at.% of Zr and Al additions, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2016.12.030

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Young's modulus and damping capacity of Ti₃Sn intermetallic compound with 1at.% and 3at.% of Zr and Al additions

Olga Ivanova^{a*}, Olexandr Shcheretsky^b, Yuriy Podrezov^a, Myroslav Karpets^a

^aFrantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky str., Kiev 03142, Ukraine

^bPhysico-technological Institute of Metals and Alloys, National Academy of Sciences of Ukraine, 34/1 Vernadsky Ave.,Kiev 03142, Ukraine

*Corresponding author. Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky str., Kiev 03142, Ukraine

Abstract

Intermetallic compound Ti₃Sn was shown to exhibit a martensitic transformation from parent hexagonal to orthorhombic phase leading to high damping capacity and low Young's modulus of the material. Present work is dedicated to studying the mechanical behavior of non-stoichiometric intermetallic compound Ti_{75.5}Sn_{24.5} with 1at.% and 3at.% of Zr and Al additions by dynamical mechanical analysis and compressive tests. Zr and Al additions decrease martensitic transformation temperatures and widen the temperature hysteresis. Studied alloyed compositions exhibited higher Young's modulus and compressive yield stress and lower damping capacity than binary Ti_{75.5}Sn_{24.5} alloy.

Keywords: Dynamic mechanical analysis, Martensitic phase transformation, Young's modulus, Damping, Intermetallic compound

1 Introduction

Recently, Ti_3Sn intermetallic compound has been reported to exhibit high damping capacity (up to $tan \delta=0.2$) and low Young's modulus (reaching 5GPa) associated with martensitic transformation occurring at about 350 K [1]. Reported damping capacity of Ti_3Sn is higher than those of Mg–Cu-based high-damping alloys (with $tan \delta$ of about 0.13) [2] and than for TiNi (with $tan \delta$ of about 0.08) [3] therefore Ti_3Sn intermetallic compound was considered as a promising material for applications in high-damping systems [1,4]. Low Young's modulus in conjunction of good biocompatibility of this material makes it attractive for biomedical use. According to [1,4] the origin for high damping capacity and Young's modulus is a martensitic

Download English Version:

https://daneshyari.com/en/article/5456105

Download Persian Version:

https://daneshyari.com/article/5456105

Daneshyari.com