
Author's Accepted Manuscript

The effect of volume fraction and dispersion of icosahedral phase particles on the strength and work hardening of Mg-Zn-Y alloys

T.Y. Kwak, W.J. Kim

www.elsevier.com/locate/msea

PII: S0921-5093(16)31552-0

DOI: http://dx.doi.org/10.1016/j.msea.2016.12.063

Reference: MSA34494

To appear in: Materials Science & Engineering A

Received date: 1 November 2016 Revised date: 12 December 2016 Accepted date: 14 December 2016

Cite this article as: T.Y. Kwak and W.J. Kim, The effect of volume fraction and dispersion of icosahedral phase particles on the strength and work hardening o Mg-Zn-Y alloys, *Materials Science & Engineering A* http://dx.doi.org/10.1016/j.msea.2016.12.063

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

The effect of volume fraction and dispersion of icosahedral phase particles on the strength and work hardening of Mg-Zn-Y alloys

T. Y. Kwak^{a,b}, W. J. Kim^{a*}

^aDepartment of Materials Science and Engineering, Hongik University, Mapo-gu, Sangsudong 72-1, Seoul 121-791, Korea

^bRare Metal R&BD Group, Korea Institute of Industrial Technology, Incheon, Korea

*Corresponding author. Tel.: +82 2 320 1468; fax: +82 2 325 6116.

kimwj@wow.hongik.ac.kr

Abstract

The cast microstructure of a Mg-13Zn-1.55Y alloy (ZW132) with a high volume fraction of *I*-phase (7.4 %) was refined considerably by severe plastic deformation via high-ratio differential speed rolling (HRDSR). Ultrafine grains (0.7-1.3 μm) with high angle boundary fractions of 0.48–0.50 were obtained after HRDSR with speed ratios of 2 or 3. The alloy processed at a speed ratio of 3 exhibited high strength and high ductility, with a yield stress of 332 MPa and a tensile elongation of 16.3 %. The ductility of the rolled ZW alloy was controlled by the work hardening rate, which increased as the amount of *I*-phase, the degree of refinement of the eutectic *I*-phase pockets, the degree of dispersion of the broken *I*-phase particles over the matrix, and the size of the resultant grains increased. A model that considers the contribution of these factors to the work hardening rate was proposed. Grain-size

Download English Version:

https://daneshyari.com/en/article/5456314

Download Persian Version:

https://daneshyari.com/article/5456314

<u>Daneshyari.com</u>