
Author's Accepted Manuscript

On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys

N. Shakibi Nia, C. Savall, J. Creus, J. Bourgon, P. Girault, A. Metsue, S. Cohendoz, X. Feaugas

www.elsevier.com/locate/msea

PII: S0921-5093(16)31179-0

DOI: http://dx.doi.org/10.1016/j.msea.2016.09.097

Reference: MSA34182

To appear in: Materials Science & Engineering A

Received date: 13 July 2016

Revised date: 21 September 2016 Accepted date: 23 September 2016

Cite this article as: N. Shakibi Nia, C. Savall, J. Creus, J. Bourgon, P. Girault, A Metsue, S. Cohendoz and X. Feaugas, On the implication of solute contents an grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys *Materials Science & Engineering A* http://dx.doi.org/10.1016/j.msea.2016.09.097

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys

N. Shakibi Nia¹¹, C. Savall¹, J. Creus¹, J. Bourgon², P. Girault¹, A. Metsue¹, S. Cohendoz¹, X. Feaugas¹

Abstract

Nano-crystalline nickel-tungsten alloys are investigated in order to provide evidence of the contribution of the solute content (light elements and tungsten) and grain-boundaries on hardness. For this purpose, Ni-W alloys were elaborated by electrodeposition in an additive free citrate ammonium bath. The variation of electrodeposition conditions leads to W contents up to 18 at. %, with a broad range of grain sizes (5 to 650 nm). The incorporation of light elements (H, O, C, N) depends on the deposition applied conditions and a progressive modification of the texture is observed with the following sequence: {110}, NT (Non Textured) and {111} textures. We show that the Hall-Petch relationship for these alloys is influenced by the presence of light elements, the nature of the crystallographic texture and the grain boundaries character. The dependence of grain size on flow stress is a direct consequence of the solute content (solute strengthening) and the evolution of the internal stresses with grain size. To explain the experimental data, two competing physical mechanisms are suggested: grain boundary shearing and dislocation emission at grain boundary, which are affected by the nature of the grain boundary and the solute content.

¹LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000 La Rochelle, France.

²ICMPE (UMR 7182) CNRS-UPEC, Université Paris Est, 2-8 rue Henri Dunant, F- 94320 Thiais, France.

¹ Present address: Institut für Physikalische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 52c, 6020 Innsbruck, Austria.

Download English Version:

https://daneshyari.com/en/article/5456554

Download Persian Version:

https://daneshyari.com/article/5456554

Daneshyari.com