
Author's Accepted Manuscript

Cu-Bi Alloys with High Volume Fraction of Bi: A Material Potentially Suitable for Thermal Surge Protection and Energy Storage

Shobhit Pratap Singh, Binay Kumar Deb Barman, Praveen Kumar

www.elsevier.com/locate/msea

PII: S0921-5093(16)31104-2

DOI: http://dx.doi.org/10.1016/j.msea.2016.09.041

Reference: MSA34126

To appear in: Materials Science & Engineering A

Received date: 9 June 2016 Revised date: 26 August 2016 Accepted date: 10 September 2016

Cite this article as: Shobhit Pratap Singh, Binay Kumar Deb Barman and Pravee Kumar, Cu-Bi Alloys with High Volume Fraction of Bi: A Material Potentially Suitable for Thermal Surge Protection and Energy Storage, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2016.09.041

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Cu-Bi Alloys with High Volume Fraction of Bi: A Material Potentially

Suitable for Thermal Surge Protection and Energy Storage

Shobhit Pratap Singh, Binay Kumar Deb Barman, Praveen Kumar*

Department of Materials Engineering, Indian Institute of Science, Bangalore – 560012, India

*Corresponding author. Tel.: +91 80 22933369. praveenk@materials.iisc.ernet.in

Abstract

Thermal energy storage and surge protection materials store surplus heat energy and inhibit the

increase in the temperature of materials in case of excess energy generation or surge. This study

explores usage of Cu-Bi alloys comprising high volume fraction of Bi for energy storage and

surge protection. Cu-Bi alloys, comprising 20, 40 and 60 vol. % of Bi, are prepared using liquid

phase sintering by heating a mixture of Cu and Bi powders above the melting temperature of Bi,

 $T_{\rm m.Bi}$. Compression testing of Cu-Bi alloys is conducted at temperatures above and below $T_{\rm m.Bi}$. It

is observed that the flow stress, yield stress, stress exponent and strain hardening exponent

drastically decrease above $T_{\rm m,Bi}$. In addition, compression creep testing is performed for Cu-40

vol. % Bi at temperatures above and below $T_{\rm m,Bi}$. The experimental results establish that this

alloy can sustain moderate level of stresses at temperatures above $T_{\rm m,Bi}$ for long periods.

Moreover, differential scanning calorimetry is employed to evaluate the heat storage capacity of

the alloy with different compositions and effect of cyclic heating and cooling on the heat storage

capacity. It is observed that the heat storage capacity of Cu-Bi alloy remains almost constant for

several melting-solidification cycles. Finally, it is suggested that Cu-Bi alloy containing high

volume fraction of Bi can be used for energy storage and thermal surge protection.

Keywords: Cu-Bi alloy; Energy storage; Mechanical behavior; Thermal surge protection

1. Introduction

1

Download English Version:

https://daneshyari.com/en/article/5456661

Download Persian Version:

https://daneshyari.com/article/5456661

<u>Daneshyari.com</u>