
UniWalk: Unidirectional RandomWalk Based
Scalable SimRank Computation

over Large Graph
Junshuai Song , Xiongcai Luo , Jun Gao, Chang Zhou, Hu Wei, and Jeffery Xu Yu

Abstract—SimRank is an important measure of vertex-pair similarity according to the structure of graphs. Although progress has been

achieved, existing methods still face challenges to handle large graphs. Besides huge index construction and maintenance cost,

existing methods may require considerable search space and time overheads in the online SimRank query. In this paper, we design a

Monte Carlo based method, UniWalk, to enable the fast top-k SimRank computation over large undirected graphs. UniWalk directly

locates the top-k similar vertices for any single source vertex u via R sampling paths originating from u, which avoids selecting

candidate vertex set C and the following OðjCjRÞ bidirectional sampling paths. We also devise a path enumeration strategy to improve

the SimRank precision by using path probabilities instead of path frequencies when sampling, a space-efficient method to reduce

intermediate results, and a path-sharing strategy to lower the redundant path sampling cost for multiple source vertices. Furthermore,

we extend UniWalk to existing distributed graph processing frameworks to improve its scalability. We conduct extensive experiments to

illustrate that UniWalk has high scalability, and outperforms the state-of-the-art methods by orders of magnitude.

Index Terms—SimRank, Monte Carlo, random walk, distributed graph processing

Ç

1 INTRODUCTION

SIMRANK is an effective and domain-independent struc-
tural similarity measurement between two vertices in a

graph [1], [2], [3], [4], [5]. Intuitively, SimRank follows the
idea that two objects are similar if they are related to similar
objects [2]. Given source vertices, the SimRank queries can
yield the SimRank scores between the source vertices and
all other vertices [4], or locate the top-k similar vertices for
the source vertices [5], [6]. This work belongs to the latter
category, since many applications require only very similar
vertices [5], [6].

Although SimRank is well-studied, it is still prohibitively
expensive due to its recursively dependency computation
[3], [4], [5], especially in a large graph. Roughly speaking,
existing approaches to SimRank can be categorized into
straightforward and Monte Carlo methods approaches.
Originally, SimRank is defined recursively, which can be
computed iteratively until a fixed point is reached. That is,
to compute all-pair SimRank scores, the straightforward
method [2] needs OðjV j4KÞ time cost and OðjV j2Þ intermedi-
ate space in the worst case, where jV j is the total number of

vertices, and K is the number of iterations. The straightfor-
ward method obviously cannot process large graphs, even
if some optimization strategies are adopted, like reusing
partial sum of intermediate results [7] or considering top-k
similar results [2].

Monte Carlo methods for SimRank, which yield results
with lower overheads [8], have been received growing
interests recently [4], [5], [6]. SimRank score between the
vertex u and v is also interpreted as the expected meeting
distance between u and v [2], which can be simulated by
sufficient L-length bidirectional random walks (BiWalk
for short) starting from u and v respectively. As only the
sampling paths originated from u and v are needed in the
single-pair SimRank computation, the cost in computing
a single-pair SimRank score is then independent of the
graph size (i.e., the number of vertices). In addition, the
error bound of results computed by Monte Carlo methods
exponentially declines with respect to the number of sam-
pling paths[8]. These two factors make it possible to com-
pute SimRank scores in a large graph via Monte Carlo
methods.

Although Monte Carlo methods are promising, they still
face challenges. Existing methods usually cache indices like
fingerprint tree [8], one-way graph [5], etc, to improve the
online query performance. These pre-computed results incur
high indexing time and space overheads, as well as themain-
tenance cost in handling updates of the graph. In addition,
the existing methods need huge search space using BiWalk
in the online query phase. Take the top-k SimRank for a
single source u as an example. A naive method requires
OðjV jRÞ sampling paths, in which R bidirectional random
walks are performed between u and each vertex in V . It still
costs high even if a distance based optimization strategy [6]
is adopted, which selects partial “near” vertices into

� J. Song, X. Luo, and J. Gao are with the Key Laboratory of High Confidence
Software Technologies, Ministry of Education & School of EECS, Peking
University, Haidian Qu, Beijing Shi 100080, China.
E-mail: {songjunshuai, luoxiongcai, gaojun}@pku.edu.cn.

� C. Zhou and H. Wei are with the Alibaba Group, Hangzhou 311121,
China. E-mail: {ericzhou.zc, kongwang}@alibaba-inc.com.

� J.X. Yu is with the Department of System Engineering, Chinese University
of Hong Kong, Sha Tin, Hong Kong. E-mail: yu@se.cuhk.edu.hk.

Manuscript received 19 May 2017; revised 16 Nov. 2017; accepted 24 Nov.
2017. Date of publication 4 Dec. 2017; date of current version 30 Mar. 2018.
(Corresponding author: Jun Gao.)
Recommended for acceptance by Y. Xia.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2017.2779126

992 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 5, MAY 2018

1041-4347� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0218-4195
https://orcid.org/0000-0002-0218-4195
https://orcid.org/0000-0002-0218-4195
https://orcid.org/0000-0002-0218-4195
https://orcid.org/0000-0002-0218-4195
https://orcid.org/0000-0002-0614-1221
https://orcid.org/0000-0002-0614-1221
https://orcid.org/0000-0002-0614-1221
https://orcid.org/0000-0002-0614-1221
https://orcid.org/0000-0002-0614-1221
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
mailto:
mailto:
mailto:


candidates C first. Such a strategy still requires OðjCjÞ times
BiWalk, each of which needs OðRÞ sampling paths. Further-
more, it is not trivial to set a proper distance threshold. A
threshold that results in fewer candidates can make the Sim-
Rank computation faster but may lose correct results.

Another issue lies in the fact that the existing methods
result in the long response time or high memory con-
sumption in distributed clusters [9], [10]. As the over-
heads of SimRank may exceed the computation capability
of a single computer, distributed SimRank is inevitable
on large graphs. At the same time, the synchronous over-
head and network cost become major cost when the exist-
ing methods are extended to distributed processing
frameworks.

To overcome the limitations of existing methods, we have
proposed a UniWalk approach [11] to top-k SimRank compu-
tation. Compared with the existing BiWalk, UniWalk has the
following advantages: it does not require indexing or candi-
date selection phase; it needs much fewer sampling paths in
the online query phase to locate the top-k similar vertices for a
single source vertex; it enables high parallelism and easy com-
putation sharing, and supports the single-source, multiple-
sources, and all-pair SimRank computation adaptively.

In this paper, we make following substantial extensions.
The original UniWalk, like other Monte-Carlo methods,
may have high variance of SimRank scores when the sam-
pling paths are limited, and such an imprecision may be
enlarged by the rectified factor used in the UniWalk. In
order to address such an issue, we introduce a path enumer-
ation method in Section 4.1, which computes SimRank
using path probabilities instead of path frequencies when
sampling. Such a strategy can achieve higher precision, and
reduce redundant path sampling cost, while maintaining
the efficiency and scalability of the original method. We
also conduct experiments to compare UniWalk with other
competitors in terms of precision over large graphs. In sum-
mary, our main contributions are as below:

1) We propose a novel unidirectional random walk,
UniWalk, to compute the top-k SimRank for given
source vertices S. With a rectified factor, UniWalk
can simulate the original BiWalk in computing Sim-
Rank scores. The time cost of UniWalk (excluding
sorting cost for the final top-k results) is OðjSjRL2Þ,
where R is the number of 2L-length sampling paths.
Usually, R and L do not vary much. Thus, the cost of
UniWalk is approximately linear to the number of
source vertices. (Section 3)

2) We further introduce three optimization strategies,
including a path enumeration strategy to achieve
more precise results and avoid redundant sampling
cost, an M-times candidates strategy to relax the
space requirement, and a path-sharing strategy for
multiple sources to lower path sampling cost. We
also devise a distributed UniWalk method, and illus-
trate that UniWalk can easily leverage existing dis-
tributed graph processing frameworks to improve
the scalability. (Section 4)

3) We conduct extensive experiments to evaluate Uni-
Walk in terms of precision, efficiency and scalability
on 8 real-life graphs and a sequence of Random and
Powerlaw graphs. The experiments show that Uni-
Walk can achieve high precision, scalability, and

outperform the existing methods by orders of magni-
tude. (Section 5)

The remainder of this paper is organized as follows. We
first review preliminaries in Section 2. Then we describe
UniWalk in Section 3, and devise its optimizations and dis-
tributed extensions in Section 4. Section 5 reports experi-
mental results in term of the precision, efficiency and
scalability. We review related works in Section 6, and con-
clude the paper in Section 7.

2 PRELIMINARIES

In this section, we first review graph, SimRank, and the
basic Monte Carlo estimation for SimRank. We then
describe distributed graph processing frameworks. Finally,
we formulate the problem.

2.1 Graph and SimRank
This paper studies SimRank computation on undirected
graphs. Formally, a graph is denoted by G ¼ ðV;EÞ, where
V is a vertex set, and E is an edge set. For each vertex u, u:id
represents its identifier, and NðuÞ contains all neighbor ver-
tices of u. Correspondingly, jNðuÞj is the degree of u. A path
p ¼ v0ˆ vl is a sequence of vertex hv0; . . . ; vli, where
ðvi; viþ1Þ 2 E for 0 � i < l. p can be represented by v0

ˆvl in
undirected graphs. The length lenðpÞ of p is the total number
of edges in a path. The vertex at the index i in a path p can
be referred by p½i�. For simplicity, p:start is the start vertex,
and p:end is the end vertex of p.

SimRank [2], proposed by Glen Jeh and Jennifer Widom
in 2002, is an important and effective similarity measure-
ment between vertices. SimRank can be computed itera-
tively with Equation (1). Here, sðu; vÞ denotes the SimRank
score between vertices u and v, C is a decay factor, IðuÞ is
the set of u’s incoming neighbors, and jIðuÞj means the car-
dinality of IðuÞ. The formula says that sðu; vÞ is an averaged
similarities of all combinations of their incoming neighbors.
jIðuÞj ðjIðvÞjÞ in the formula above can be replaced by jNðuÞj
ðjNðvÞjÞ, respectively, in undirected graphs

sðu; vÞ ¼
1 u ¼ v

C
jIðuÞjjIðvÞj

P
i2IðuÞ;j2IðvÞ sði; jÞ otherwise:

(
(1)

Fig. 1 shows an example bipartite graph about users
and items. SimRank captures the similarity of two vertices
in a more reasonable way than other measurements [1],
[12]. For example, both similarities sðJack, JamesÞ and
sðJack, KateÞ are 0 with the co-citation measurement [12],
which counts common neighbors for two vertices. How-
ever, Jack is more similar to James than to Kate, as Computer
is more similar to Health monitor than to Fish oil. SimRank
can capture the similarities when the number of iterations
is larger than 1.

SimRank sðu; vÞ can also be interpreted as the expected
meeting distance of two walkers, which start from u and v
respectively, and move step by step randomly and simulta-
neously [2]. Take Fig. 1 as an example. Two paths 1! 2! 3
and 3 6 5 can be used in computing the SimRank score
sð1; 5Þ between vertex 1 and 5. By enumerating all possible sit-
uations, the SimRank score between two vertices u and v can
be computed by the expectedmeeting distance in

sðu; vÞ ¼
X

p:uˆ tˆ v

probðpÞClenðpÞ=2: (2)

SONG ET AL.: UNIWALK: UNIDIRECTIONAL RANDOMWALK BASED SCALABLE SIMRANK COMPUTATION OVER LARGE GRAPH 993



Download English Version:

https://daneshyari.com/en/article/5457002

Download Persian Version:

https://daneshyari.com/article/5457002

Daneshyari.com

https://daneshyari.com/en/article/5457002
https://daneshyari.com/article/5457002
https://daneshyari.com

