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a b s t r a c t

Recent studies have verified the efficiency of stochastic state point process filter (SSPPF) in coefficients
tracking in the modeling of the mammalian nervous system. In this study, a hardware architecture of
SSPPF is both designed and implemented on a field-programmable gate array (FPGA). It provides a time-
efficient method to investigate the nonlinear neural dynamics through coefficients tracking of a
generalized Laguerre–Volterra model describing the spike train transformations of different brain sub-
regions. The proposed architecture is able to process matrices and vectors with arbitrary sizes. It is
designed to be scalable in parallel degree and to provide different customizable levels of parallelism, by
exploring the intrinsic parallelism of the FPGA. Multiple architectures with different degrees of
parallelism are explored. This design maintains numerical precision and the proposed parallel
architectures for coefficients estimation are also much more power efficient.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cognitive neural prosthesis design is an emerging topic in
neural engineering research. For many years, various studies have
endeavored to develop a silicon-based prosthetic device that can
be implanted into the mammalian brain, e.g., the hippocampal
CA3 [1]. This device is expected to perform bi-directional commu-
nications between the intact brain regions while bypassing the
degenerated CA3 region. Such a prosthetic device (if successfully
developed) could provide fundamental treatment to diseases
related to cognitive impairment, such as Alzheimers.

The generalized Laguerre–Volterra model (GLVM) proposed by
Song et al. [2] is a data-driven model first applied to predict
mammalian hippocampal CA1 neuronal spiking activity based on
detected CA3 spike trains by which the expected neuroprosthetic
function can be achieved. GLVM consists of five major components
(Fig. 1). It uses a weighted sum of convolution products between the
model inputs and the orthonormal Laguerre basis functions, passing

through a threshold trigger to generate the predicted model outputs.
A detailed calculation flow of the generalized Laguerre–Volterra
(GLV) algorithm can be found in [2,3]. The prediction function of
the GLV algorithm is very straightforward when implemented on
different platforms. The Laguerre coefficients (weights of convolution
products), however, must be estimated first using the recorded input/
output data. This estimation process is often the most computation-
ally intensive stage in the entire calculation flow. In this work, we
focus on the estimation stage of the GLV algorithm and utilize an
efficient adaptive method to estimate the coefficients dynamically
and accurately.

The stochastic state point process filter (SSPPF) is a suitable
choice for the aforementioned problem [4]. Derived by Eden
et al. [4] based on Bayes' rule Chapman–Kolmogorov paradigm
and point process observation models, it has been verified to be
effective for tracking dynamics of neural receptive fields under
various conditions. In 2009, Chan et al. [5] applied the algorithm to
realize the estimation function of the GLVM.

GLVM is only one successful application of SSPPF which is
designed for point process and especially suitable to do neural
encoding/decoding. This filter has been compared with SDPPF,
extended Kalman filter (EKF), and pass-by-pass method [4] in the
simulation of the response of pyramidal neurons in the CA1 region
of the rat hippocampus to the movement of the animal. SSPPF
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provided the most accurate tracking of both the linear (slow) and
jump (rapid) evolution scenarios. In the adaptive decoding study
[4], the feasibility of reconstructing a neural signal with SSPPF
from an ensemble whose receptive fields are evolving is illu-
strated. Moreover, Salimpour et al. [6] have applied the SSPPF to
the neural spiking activity of inferior temporal cortex of macaque
monkey for the first time. The filter is used to estimate the
conditional intensity of the point process observation as a time
varying firing rate in cooperation with a particle filter. The results
with a real data indicate that, based on the assessment of good-
ness-of-fit, the neural spiking activity and the biophysical property
of neuron could be captured more accurately compared with
conventional methods.

Although the SSPPF has been successfully and widely applied,
due to the fact that this algorithm was implemented with
commercial software and run on a desktop setup, the calculation
process has certain limitations. Although conventional CPUs have
experienced a significant improvement on computing power,
there still exist many bottlenecks, such as the difficulty to further
increase clock rates and a mismatch between memory bandwidth
and ever-increasing CPU speed, which are preventing them from
successfully keeping up with the demands from high-performance
computing (HPC) applications. When the number of GLVM input
and output grows, the number of Laguerre coefficients to estimate
increases exponentially. Therefore, a high-performance platform is
required for off-line (for model training) and on-line (for predic-
tion) coefficient estimations.

In order to fill the enlarged gap between HPC requirement and
limited CPU performance, other parallel platforms are attracting
attentions from researchers. The FPGA is a competitive solution
which is reconfigurable to satisfy various computational require-
ments, like large-scale data or real-time video processing. It is able
to provide different levels of parallelism according to available
hardware resource to maximize the performance. More impor-
tantly, the inherent low-power property of FPGAs makes it suitable
for implantable neural prosthesis designs. Furthermore, the
FPGA design is always demanded as a prototype of silicon-based
prosthetic device for verification and testing.

In this work, we overcome the limitations of the previous
works and for the first time, implement the SSPPF on the FPGA-
based hardware platform to achieve more efficient and effective
model coefficients estimation.

The major contributions of this paper are as follows: (1) The
first hardware architecture of SSPPF has been designed and
implemented, which is practical to be applied to the general
framework of future cognitive prosthetic device. (2) This design
is capable of processing arbitrary size matrices/vectors without
any pre-configurations; the maximal size supported is limited only
by the available on-chip memory resource. (3) In order to achieve

high performance computing, the architecture is made scalable
through parallelism. Multiple designs in different parallelism
degrees are explored, implemented, and tested. (4) Our design
can be generalized to readily accommodate other adaptive filters
which require extensive matrix/vector operations, since the essen-
tial matrix operations (multiplication and inversion) are realized in
current work.

The rest of the paper is organized as follows: Section 2 describes
related studies. Section 3 introduces the SSPPF algorithm. Section 4
describes both the overall hardware architecture and its compo-
nents. Section 5 provides the implementation results and perfor-
mance evaluation. Section 6 summarizes the paper.

2. Related works

The performance of a platform established for conducting the
estimation function can be measured with three standards: effec-
tiveness, efficiency, and realisticity of application. A silicon-
based implementation of the GLVM dates back to 2005, when
Berger et al. [7] first completed initial prototyping work utilizing a
field-programmable gate array (FPGA). In 2006, Hsiao et al. [8]
fabricated such an architecture using the 18 μm process of
Application Specific Integrated Circuit (ASIC) technology. Their
study was based on the single-input, single-output (SISO) GLVM,
the simplest form of the model. However, in a real-world situation,
model output is often affected by the spiking activity of multiple
inputs. This activity weakens the realisticity of the design applica-
tion into a practical neuroprosthetic device.

In 2011, Li et al. [9] successfully implemented the multi-input,
multi-output (MIMO) GLVM on the FPGA-based hardware plat-
form. They achieved a remarkable speedup in model coefficient
estimation when compared to a traditional software based
approach. They adopted the steepest decent point process filter
(SDPPF) as the tracking method. This method is simpler in the
mathematical representation but sacrifices certain levels of accu-
racy when compared to other well-established methods, i.e., the
SSPPF or the Kalman Filter. Thus, this method is less effective.

A major improvement of SSPPF over SDPPF is the introduction
of the adaptive learning rate. Learning rate is important for
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Fig. 1. Major components of the generalized Laguerre–Volterra model: K is the
feedforward Volterra kernels, h is the feedback kernel, θ is a threshold quantity, ϵ is
the Gaussian white noise quantity. The u, a and w are synaptic potential, after
potential and pre-synaptic membrane potential respectively. For details see Section
2 of [3].

∂
∂C

TC
∂

∂

∂
∂C

Fig. 2. Diagrams of SSPPF and SDPPF flow.
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