
A comparative study of energy/power consumption in parallel
decimal multipliers

Amin Malekpour a, Alireza Ejlali a,n, Saeid Gorgin b

a Sharif University of Technology, Computer Engineering, Embedded Systems Research Laboratory (ESRLab), Azadi Ave, Tehran, Iran
b Institute for Research in Fundamental Sciences (IPM), School of Computer Science, Iran

a r t i c l e i n f o

Article history:
Received 19 April 2013
Received in revised form
16 February 2014
Accepted 18 February 2014
Available online 4 April 2014

Keywords:
Decimal multiplication
Parallel multiplier
Energy consumption
Power consumption

a b s t r a c t

Decimal multiplication is a frequent operation with inherent complexity in implementation. Commercial
and financial applications require working with decimal numbers while it has been shown that if we
convert decimal number to binary ones, this will negatively influence the preciseness required for these
applications. Existing research works on parallel decimal multipliers have mainly focused on latency and
area as two major factors to be improved. However, energy/power consumption is another prominent
issue in today's digital systems. While the energy consumption of parallel decimal multipliers has not
been addressed in previous works, in this paper we present a comparative study of parallel decimal
multipliers, considering energy/power consumption, leakage and dynamic power consumption, beside
latency and area. This study can provide some guidelines for EDA tools and hardware designers to choose
proper multiplier based on given applications and design constraints. All designs in were implemented
using VHDL and synthesized in Design-Compiler toolbox with TSMC 45 nm technology file.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the dramatic advances in VLSI technology, hardware
realization of many complex functions is possible now. There is an
intensive request for decimal computations in various critical applica-
tions such as scientific, commercial, financial and internet-based
applications [1]. Since binary representation cannot ensure preciseness
for simple decimal fractions (e.g. 0.2), design and implementation of
decimal arithmetic algorithms draws attention of scientists and
practitioners.

On account of the importance of decimal arithmetic, in recent years
IEEE has added new feature of decimal to IEEE 754 Standard for
Floating-Point Arithmetic (IEEE 754–2008) [2]. Decimal multiplication
is one of the widely used operations in throughout the computation
systems [3].

It has been observed that the considerably wider digit set of
decimal numbers has made decimal multiplication more complicated
than binary multiplication [4]. Indeed, decimal multiplication is a
complex, time consuming, power hungry, and high frequent operation.
Decimal multiplication has been realized by iterative hardware

algorithms in some recent announced processors (e.g. IBM POWER6
[5], IBM z10 [6] and IBM z900 [7]), and the area consumption of an
iterative multiplier is lower as compared to parallel implementations.
However, there are several promising points for exploiting parallel
multipliers especially because the latency of a parallel multiplier
makes it more appealing for decimal intensive calculations.

So far designers of conventional arithmetic modules have mainly
focused on latency and area as design parameters to be improved but
power/energy consumption is another important key factor because of
limited power budget in embedded or portable systems and the issue
of heat generation by fast, complex and power hungry circuits [8,10].

The algorithms that have been proposed for decimal multi-
plications mostly iterate through the multiplier and add the
corresponding multiplicand digits to a register successively. But,
there are various architectures proposed for parallel decimal
multiplication, as will be described in the next section; however
they have only focused on latency and area and did not study the
energy/power consumptions.

In this paper we provide a comparative study so that designers
can identify an appropriate parallel decimal multiplier among the
existing ones which can meet their constraints, rather than
proposing a new design for such multipliers. It has been observed
that comparative studies (like the works in [11–16]), where only
existing designs are studied and compared (without providing any
new design), provide useful information and guidelines to designers
and researchers, and we aim at providing a similar research for parallel

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

http://dx.doi.org/10.1016/j.mejo.2014.02.014
0026-2692/& 2014 Elsevier Ltd. All rights reserved.

n Correspondence to: Sharif University of Technology, Department of Computer
Engineering, P.O. Box 11155-9517, Tehran, Iran. Tel.: þ98 21 66166621;
fax: þ98 21 66019246.

E-mail addresses: malekpour@ce.sharif.edu (A. Malekpour),
ejlali@sharif.edu (A. Ejlali), gorgin@ipm.ir (S. Gorgin).

Microelectronics Journal 45 (2014) 775–780

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2014.02.014
http://dx.doi.org/10.1016/j.mejo.2014.02.014
http://dx.doi.org/10.1016/j.mejo.2014.02.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2014.02.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2014.02.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2014.02.014&domain=pdf
mailto:malekpour@ce.sharif.edu
mailto:ejlali@sharif.edu
mailto:gorgin@ipm.ir
http://dx.doi.org/10.1016/j.mejo.2014.02.014


decimal multipliers. To do this, we compare seven parallel decimal
multipliers (indeed almost all the best designs that have been so far
presented by the researchers) from the viewpoint of energy/power
consumption, leakage and dynamic power consumption as well as
latency and area. Based on this study, wewill propose some guidelines
which could help EDA tools and hardware designers to use an
appropriate multiplier for a given application and design constraints.

Overall, we make the following contributions:

� A comparative study of parallel decimal multipliers is pre-
sented and the advantages and disadvantages of each design
have been analyzed. To the best of our knowledge, we are not
aware of any published papers that include the energy/power
consumption results of parallel decimal multipliers.

� We propose some guidelines for EDA tools and hardware
designers based on our comparative study.

� We measure and report power consumption of parallel decimal
multipliers for the first time and show some designs consume
large power to gain performance.

The rest of this paper is organized as follows. In Section 2, we
briefly describe the best seven parallel decimal multipliers. A theore-
tical foundation of leakage and dynamic power, in Section 3, paves the
way for the discussion on the energy consumption and analysis of
experimental results in Section 4. In Section 4 we also present
comparisons from different viewpoints, our flow of implementation
and synthesis of designs, and a number of guidelines for selecting
suitable parallel decimal multiplier for a given application. Finally,
conclusions and prospects for further research are found in Section 5.

2. Decimal multipliers

The algorithm of decimal multiplication is composed of three
steps: partial product generation (PPG), partial product reduction
(PPR), and redundant to non-redundant conversion. The PPG module
generates matrix of partial products consisting of the BCD and
redundant digits. This matrix is sent as input to PPR. In parallel
decimal multipliers, partial products are compressed to a single depth
redundant decimal or a double BCD digits format via a reduction tree.
Finally, a redundant to non-redundant decimal converter or a decimal
adder provides final product result. Researchers have proposed various
techniques and algorithms for implementing these parts that we will
describe in this section briefly.

The first implementation of parallel decimal multiplier is
proposed in [19]. In this design, in the PPG part for providing
X–9X multiples (where X is multiplicand), only multiples 2X, 5X
and 10X are generated and a 90s complement module has been
used to compute �X and �2X. Then two multiplexer have been
used to select appropriate multiples, which are added by means of
a 3:2 radix-10 carry-save adders (CSA), based on value of recoded
multiplier digits. The radix-10 CSA reduces two BCD digits and one
input carry bit to one BCD digit and one carry bit.

In the PPR part of [19], radix-10 CSA and counters are used to
add a carry save operands with BCD operands in a 6-level tree. In
the first level of the PPR part, eight CSAs have been used and the
carries of other partial products are added by means of a carry-
counter (CC). A carry-counter adds eight carries of the same
weight and produces a BCD digit. Finally, the radix-10 carry-save
representation is converted into the BCD by means of a radix-10
carry save to BCD converter, in which the inputs are the 2n digit/
bit (outputs of the PPR part) and the output is 32 digit BCD.

For fast partial product generation and reduction, a novel algorithm
is proposed in [20] that uses 4221 and 5211 encodings. In PPG part
multiples of �2X, �X, X, 2X, 5X, and 10X are produced by shift and
encoding conversion. In this design, carry-save (4221) encoding is

utilized via proposing a new decimal 3:2 carry-save adder (CSA) that
reduces three input digits to equally weighted carry and sum, where
all inputs and outputs digits are represented in (4221) encoding. With
eight levels of 3:2 CSA modules, in the PPR part, a 32:2 decimal CSA is
constructed. The last step in this multiplier requires a 32-digit BCD
(128 bits) adder. This adder is a 32-digit conditional speculative adder,
which provides input carry of each digit via a quaternary tree.

Negative multiples cause some area and delay inefficiency in
[19,20]. Therefore, in [22], the unsigned multiples of multiplicand
X, 2X, 4X, and 5X are used for partial product generation. For
partial product reduction, two alternative reduction schemes are
proposed: delay-optimized and area-optimized. The former
scheme, which is called [22]-a in this paper, uses a novel carry-
free adder (ODDS adder) and its restricted input varieties to
achieve a VLSI-friendly recursive partial product reduction tree,
while the latter scheme, which is called [22]-b, employs binary 4:2
compressors augmented with þ0/6 correction logic. Finally in the
last step, for both architectures, a redundant to non-redundant
converter is used to convert ODDS products to BCD digits.

Although, the PPG schema of [22] does not generate negative
multiples, however, generation of 4X, in respect to other multiples,
takes two times delay. Hence, a new PPG method is presented in
[21], which only generates 2X, 5X, (8Xlþ8Xh), (9Xlþ9Xh) to
compose other multiples. This new method avoids 4X generation
and negation logic at the cost of increase in hardware complexity
of the PPG in order to generate 8X and 9X.

In order to reduce the partial product in [21], a 6-level reduction
tree is used. The carry input of BCD-FAs in the first level of the PPR
does not use. Only half of the generated carries in the PPR levels are
absorbed by BCD-FAs. In order to convert the unused carries to BCD
digits, a 9:4 counter and a 6:3 counter are used in this design. For
more acceleration a speculation logic is used and the carryout of the
very last BCD-FAs is routed to a multiplexer that selects between b and
bþ1. Actually, the increment operation in speculation logic is per-
formed off the critical path and just takes two logic levels. The last step
in this multiplier requires a 32-digit BCD (128 bits) adder. This adder is
a 32-digit conditional speculative adder, which provides input carry of
each digit via a quaternary tree.

Architectures of two parallel decimal multipliers are presented
in [23], which are improved designs of multiplier in [20]. In the
PPG part of 16-digit radix-5 architecture multiples �X, 2X, �2X,
5X, and 10X are generated. Then 32 decimal partial products are
generated, half coded in (4221) and the other half coded in (5211).
In order to reduce this aligned partial product, mixed (4221/5211)
decimal digit CSA trees have been used.

In the PPG part of 16-digit radix-10 architecture, multiples X,
2X, 3X, 4X, and 5X coded in (4221) and 17 partial products are
generated. In order to generate the 17 partial products, an
encoding of the multiplier into 16 SD radix-10 digits is needed.
When the sign of the corresponding SD radix-10 digit is negative, a
level of XOR gate inverts the outputs of the multiplexer. Then the
partial products, coded in (4221), are aligned and reduction is
performed by means of decimal digit CSA trees.

For redundant to non-redundant converting, both architectures
have used a quaternary tree adder according to conditional speculative
decimal addition proposed by the same authors in [24].

It is worthwhile to note that the primary concerns of all
aforementioned works are latency and area – they do not report
any energy/power consumption of parallel decimal multipliers.

3. Energy/power consumption

As transistor counts and clock frequencies have increased,
power consumption has skyrocketed and now is an important
design constraint [25].

A. Malekpour et al. / Microelectronics Journal 45 (2014) 775–780776



Download English Version:

https://daneshyari.com/en/article/545720

Download Persian Version:

https://daneshyari.com/article/545720

Daneshyari.com

https://daneshyari.com/en/article/545720
https://daneshyari.com/article/545720
https://daneshyari.com

