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A B S T R A C T

We calculate the optical conductivity of the generalized two-dimensional Hubbard model including vertex
corrections, by using a ladder approximation in the diagrammatic expansion. We have obtained a super-
conductor behavior for this system at low temperature. Employing the ladder approach, we have included the
influence of the electron-electron interaction on a previous result obtained in the mean field approximation. We
have obtained the behavior of the optical conductivity, employing the ladder approximation, tending to zero in
the DC limit. Since this approximation is better than the mean field approximation (it include information about
the electron-electron interaction) then we have a better description to the behavior of the AC optical
conductivity for the two-dimensional Hubbard model.

1. Introduction

Is well known that the conductivity of the two-dimensional Hubbard
model is particularly relevant for high-temperature superconductors. Into
this framework, vertex corrections are expected to be important because of
strongly momentum-dependent self-energies [1]. Moreover, the super-
conductivity in hole-doped high-temperature superconductors is studied
with emphasis on the connections among the Luttinger theorem, topolo-
gical quantum field theories and critical theories involving change in the
size of the Fermi surface [2]. The pseudogap phase have been described as
a Higgs phase in a SU(2) gauge theory, where the Higgs field represents
the local antiferromagnetism. Usually the superconductivity has been
studied employing besides of the two-dimensional Hubbard model, the
projected version of it, the t-J model [3–7]. However, recently, the utility
of such modeling for high-temperature superconductors is highly ques-
tionable. In such system the gap is d-wave, i.e. there are regions in
momentum space where the gap is zero. This has a strongly impact on the
shape of the optical conductivity. On the other hand the superconductivity
at high-temperature can be studied also using disordered spin systems
modeled by the spin-1/2 two-dimensional Heisenberg antiferromagnet
(AF) [8,9]. In general, is well known that the fact the electric conductivity
tending to infinity, is not taken as the true definition of superconductivity.
A material is superconducting if it presents the Meissner-Ochsenfeld
effect. This effect is the fact that metals in the superconductor state are
perfect diamagnets and hence expels a weak external magnetic field.

Is well known still that the type-II superconductivity cannot be
explained using the standard BCS theory because this theory is valid only
when the coupling constant between the par of electrons is small

[2,10,11]. However, the Ginzburg-Landau theory was derived from the
BCS theory by Gorkov long time ago. In materials such as 3He there are
two types of superfluidity depending on its pressure and its temperature.
In a superconductor, electrons (fermions) form Cooper pairs in order to
form bosons, which enables Bose-Einstein condensation. In 3He, there is a
similar situation: the 3He atoms (which are fermions) pair up and form
bosons too. However, in that case, they are not atoms vibrations that are
responsible for the formation of pairs, but rather the fact that the atom
magnetization become parallel to one another. The total magnetization of
a pair of 3He atoms taking part in superfluidity is in that case not equal to
zero, contrary to the magnetization of a Cooper pair in the BCS theory.

One of the most important challenges in the study of high
temperature superconductivity is to understand the relation between
antiferromagnetism 2D with the superconductivity. There are many
different families which include the iron-pnictides, electron-doped
cuprates and heavy-fermion superconductors that are in close connec-
tion with the AFM phase [10]. Recently, there are a large number of
measurements reported in iron-pnictide family as a function of the
concentration of holes x [12,13].

The plan of this paper is the following. In Section 2 we describe the
model, in Section 3 we describe the techniques to calculate the
transport coefficients. In Section 4, we present our conclusions and
final remarks.

2. The model

In this paper, we calculate the conductivity considering the
influence of the electron-electron interaction on the superconductivity
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of the generalized two-dimensional Hubbard model. The model is given
by the following Hamiltonian [14].
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where i j〈 , 〉 stands for the sum over nearest-neighbors. Such model can
be written in the form
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By expanding the components and making use of the SU(2) identity
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Thus, we can write
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The last term is an additive constant. Thus, we have the model Eq. (1)
is reduced to the model
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We have calculated the vertex corrections for the conductivity in

this model, where D = − U2
3 . S r

→
(→) is the total spin of the band in r→. The

system is SU(2) invariant on the spin rotations. For large values of U,
i.e. U t/ → ∞, the local spin becomes as large as possible.

The single-particle fermionic spectrum is given as
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and thus the dispersion relation of the free Hamiltonian is

ζ ε Δ= + ,k k
2 2 (9)

where Δ is the energy gap given as U ϕΔ = /3 | | and εk is the dispersion
relation of free fermion

ε t k k= −2 (cos + cos ).k 1 2 (10)

From the solution of the analog BCS gap equation [15], we turn out
that a number of different possible states can occur. The most
important ones are the Anderson-Brinkman-Morrel state (ABM) and
the Balain-Werthamer state (BW). The BW state has a gap, which has a
constant magnitude over all the Fermi surface, rather like a BCS
superconductor, while the ABM state has a gap which vanishes at the

two points on the Fermi surface, k k
→

= (0, 0, ± )f . This difference leads
to different physical properties. The ABM state is identified with 3He-
A-phase, while the BW state corresponds to the 3He-B-phase. The B-
phase is generally the more stable one, except in the high pressure
region near to Tc [15].

3. Calculus of the transport coefficients

3.1. Kubo formalism of transport

The current operator for the two-dimensional Hubbard model is

given by [14].

∑n t it c n t c n x t h c(→, ) = − ( (→, ) (→ + →, ) − . .)i
α

α α i
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where cn
†, c( )n is a creation (annihilation) electron operator. We use the

fermion model of two-dimensional Hubbard model [14] to determine
the regular part of the spin conductivity (AC conductivity) or con-
tinuum conductivity and for the DC conductivity. The
Superconductivity is the ability of fermions to form a persistent or
non-dissipative current without an external field [13]. This does not
happens in conventional metals where an electric current appears as

response of the system to electric field, given by Ohm law, σ E
⎯→⎯

=
⎯→⎯

.

Where E
⎯→⎯

is an external electric field and σ is the electric conductivity.
The linearly growing of the optical conductivity for large ω cannot
satisfy in any way the f-sum rule [1], since the method used is accurate
in the range of low ω.

In the Kubo formalism [16–20] the optical conductivity is given by
the real part of the conductivity σ ω( ), σ ω′( ), being written in a standard
form as [20].

σ ω D δ ω σ ω′( ) = ( ) + ( ),S
reg (12)

where the Dirac delta term represents the DC contribution, where DS is
the Drude's weight
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where it is given by two terms. The first term is given by the kinetic
energy of the particles and the second term from Λ k ω′( = 0, → 0) that
is the real part of the current-current correlation function defined as
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σ ω( )reg , the regular part of σ ω′( ), is given by [19].

σ ω Λ q ω
ω
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where Λ″ is the imaginary part of the current-current correlation
function. It represents the continuum contribution to the conductivity
or AC conductivity. In the Eqs. (13) and (23), Λ′ and Λ″ stand for the
real and imaginary part of Λ.

After a long calculation we obtain the AC electric conductivity,
neglecting electron-electron interactions, as
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where f ζ e( ) = ( + 1)k
ζ T/ −1k is the Fermi-Dirac distribution.

3.2. Ladder approximation

The electron-electron interaction can be represented by the vertex
function Πkk′ which satisfies the Bethe-Salpeter equation [21].
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The matrix V ω ω( ′, )kk k k
αα

11 1 is the sum of all irreducible interaction parts.
We take into account the electron-electron interaction to lowest order
approximating Vαα by its first-order irreducible interaction part
[18,21].

V ω ω V( ′, ) = ,kk k k
αα

kk k k11 1 1 1 (19)

where we neglect all the contributions to Vαα where two or more of the
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