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A B S T R A C T

Tunneling of the oscillatory part of the magnetization is considered in small metallic samples at very low
temperatures in quantized magnetic fields. By using the instanton approach, we calculate the action integral for
the tunneling rate of the magnetization under conditions of the strong magnetic interaction between conduction
electrons and the de Haas-van Alphen effect in specimens, which may undergo diamagnetic phase transitions.
The obtained low tunneling temperature independent frequency may be detected by a resonance way. The
temperature of the crossover between the classical and tunneling regimes of magnetization fluctuations is
calculated.

1. Introduction

The existence of magnetic domains of the electron spin origin is
well known in literature [1]. The phenomenon of domain formation
associated with orbital magnetic moments has been detected in silver,
beryllium, white tin, aluminium and lead [2–7]. These non-spin
domains have been observed under conditions of the strong, nonlinear
de Haas-van Alphen (dHvA) effect. One of the reasons for this behavior
of metal samples is the instability of an electron gas called “diamag-
netic phase transition” and leading to formation of Condon non-spin
domains [3]. It is caused by magnetic interactions between conduction
electrons, which become important when the internal field in the
sample is significantly different from the applied magnetic field (the
Shoenberg effect) [2]. As was shown by Condon, the above instability of
the electron gas makes possible stratification of the sample into
domains [8]. The state of art in this field has been reviewed in papers
[4,9].

In recent years there has been considerable interest in the
phenomenon of macroscopic quantum tunneling [10]. It corresponds
to the tunneling of a macroscopic variable through the barrier between
two minima of the effective potential of a system. The possibility of
tunneling of the magnetic moment in nanometer-scale particles at very
low temperatures has been detected and studied in ferromagnets and
antiferromagnets [11–13].

The study of diamagnetic phase transitions observed in quantizing
magnetic fields and at very low temperatures allows examining an
additional quantum effect. It is of importance to investigate the above

mentioned magnetic ordering in small, one domain, metallic samples
exhibiting dHvA oscillations. The manifestation of the macroscopic
tunneling in ferromagnets is the transition between two magnetization
states of opposite directions. The effect happens, if the specimen
consists of a single domain. In classical physics at high temperatures
there are fluctuations resulting from thermal agitation. In quantum
physics at low temperatures, the magnetic particle can move from one
magnetic orientation to another by tunneling. Hence, the problem
resembles quantum nucleation, i.e. the appearance of a nucleus of a
domain of the orientation, opposite to the initial one. Tunneling of the
oscillatory part of the magnetization, i.e., quantum fluctuations of the
magnetization in metals may occur in the same way.

In this paper we compute the rate of tunneling of the orbital
magnetization in small metallic samples. By using the instanton
approach, we calculate the exponential of the action integral for the
tunneling splitting induced by quantum dynamics of the oscillatory
part of the magnetization.

In all the cases of the existence of this instability of the electron gas
the dissipation effect on the tunneling rate seems to be negligible since
the tunneling occurs at very low temperatures and in very pure
samples, otherwise the diamagnetic phase transition is unable to occur.

2. Model

The oscillatory part of the density of the thermodynamic potential
can be written neglecting all harmonics in the Lifshitz-Kosevich within
the framework of the first harmonic approximation [2]:
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where b k B H k h π n M= ( − ) = [ + 4 (1 − ) ],ex0 M is the oscillatory part
of the magnetization, H0 is the magnetic field inside the material,
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2 is the fundamental frequency of dHvA oscillations, n is the

demagnetization factor,h H H= −ex ex 0, is the small increment of the
external magnetic field, B is the magnetic induction).

In the first harmonic approximation, the magnetization is found
from the implicit equation of state [2]:

πkM a k h π n M4 = sin[ ( + 4 (1 − ) )],ex (2)
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is the reduced amplitude of magnetization

oscillations. If a > 1, a state of lower density of the thermodynamic
potential can be achieved over part of an oscillation cycle by the sample
breaking up into domains. Since the demagnetization factor n is not a
well-defined quantity we omit it in the further use of Eq. (2). However,
the demagnetization problem will be further considered. We examine
the behavior of the magnetization in the center of the period of dHvA
oscillations, where the increment of the external magnetic field is equal
to zero: h = 0ex . This case corresponds to ferroelectrics and ferro-
magnets at zero external field leading to the appearance of 1800

domains.
Close to the phase transition temperature (which is found from the

equation a =1 in the case of infinite specimens) we can present the
density of the thermodynamic potential as an expansion in powers of
the magnetization in the center of dHvA oscillations [9]:
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Therefore, we arrived at the Landau-type thermodynamic potential:
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3 2. According to [2], the temperature and
magnetic field dependence of the reduced amplitude of dHvA oscilla-
tions is:
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c is the velocity of light, kB is the Boltzmann constant, e is the absolute
value of the electron charge, ℏ = h
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, we derive a shift of the diamag-

netic phase transition compared to the infinite sample case and a shift
of the temperature-magnetic field phase diagram [17].

Equation a = 1 describes the temperature-magnetic field phase
diagram determining the locus of points showing the series of the
phase-transition temperatures in an infinite sample. The envelope of
these points is the diamagnetic phase-transition boundary. However,
as it follows from [17], the domain phase appears in the slab not at a
=1 but at
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in the film of thickness L . Thus, the phase transition occurs at

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟a a a r

L
* = 1, * = − 1

3
c

4
3

2
3

(7)

3. Results and their discussion

We consider the double quantum effect. Firstly, the magnetic field
should be a quantized one for the existence of the dHvA effect. The
second quantum effect is the macroscopic tunneling of the oscillatory
part of the magnetization. The tunneling mode should be independent
of temperature. Thus, the reduced amplitude of magnetization oscilla-
tions a* does not depend on temperature. This occurs at very low
temperatures for which λT < < 1 (Eq. (5)).

In the center of the period of dHvA oscillations the density of the
thermodynamic potential (4) has two degenerated energy minima. The
tunneling removes the degeneracy of the ground state, corresponding
to two opposite directions of the magnetization, leading to the new
ground state, which is a superposition of the up and down states. In the
semi-classical limit, the tunnel splitting Δ can be calculated using
standard methods like WKB [18] or the instanton technique [19] to
obtain analytical results. In the latter, the problem of finding Δ is
essentially reduced to determine the classical path, which connects the
two maxima of the inverted potential Ω M− ( ) (the minima of Ω M( ))
and calculate the corresponding action. Actually, the tunneling of
magnetization should be described as a sum over all possible paths
of transitions from the initial state to the final one, including those that
are classically forbidden. Among the paths, the saddle point path
dominates. It passes through the valley of the energy, i.e., the
thermodynamic potential density relief. For a quartic double-well
potential of the form (4) these calculations can be performed analyti-
cally. Using [19], we obtain
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where SI is the instanton action obtained from the sum over paths, V is
the volume involved in the tunneling process given by V L L L= x y z, the
applied magnetic field is oriented along the axis z, the sizes of Lx and Ly
are taken to be close to the thickness of a slab sample L L=z ,
L L L= ≈x y . The pre-factor ω0 is a classical attempt frequency related
to the cyclotron frequency ωc by the formula ω ω a= ( * − 1)c0

1/2. The
presented mode softening is determined by the magnetic interactions
between conduction electrons leading to Condon domains. The factor
a( * − 1)1/2 is the result of the scaling procedure characteristic of the
mean field theory.

The tunneling splitting value,Δ, is given by Eqs. (7)–(10). Taking
into account Eqs. (7)–(10) we obtain:
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γ is the period of the dHvA oscillations.
We estimate the tunneling splitting (8). For instance, for silver,

taking T K= 0.17D ,H T= 37 , L nm= 240 , a* = 1.01 we obtain the tunnel-
ing splitting Δ Hz= 1.9⋅103 close to those observed in magnetic metals
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