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A B S T R A C T

The effect of the quantum feedback on the tightness of the variance-based uncertainty, the possibility of using
quantum feedback to prepare the state with a better tightness, and the relationship between the tightness of the
uncertainty and the mixedness of the system are studied. It is found that the tightness of Schrodinger-Robertson
uncertainty (SUR) relation has a strict liner relationship with the mixedness of the system. As for the Robertson
uncertainty relation (RUR), we find that the tightness can be enhanced by tuning the feedback at the beginning
of the evolution. In addition, we deduce that the tightness of RUR has an inverse relationship with the
mixedness and the relationship turns into a strict linear one when the system reach the steady state.

1. Introduction

The uncertainty principle which is similar to the quantum entan-
glement is one of the most remarkable characters of quantum
mechanics as well as a fundamental departure from the principle of
classical physics [1–7]. Any pair of incompatible observables complies
with a certain form of uncertainty relationship, the constraint of which
sets the ultimate bound on the measurement precision achievable for
these quantities. The conventional variance-based uncertainty relations
which is first deduced by Heisenberg in the circumstance of position
and momentum possess a clear physical conception and still find a
variety of applications in quantum information science, such as
entanglement detection [4,8], quantum spin squeezing [9–14], and
even quantum metrology [15–17]. Therefore the improvement of the
tightness and the lower bound of the uncertainty becomes very
important [18]. Robertson uncertainty relation (RUR) is the most
famous form among them, which reads [2]:
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where the standard deviation O∆ and expectation value O are taken
over the state ρ with O∈{A, B}. Meanwhile, it is worth noting that the
RUR can be derived from another strengthened inequality, the

Schrodinger-Robertson uncertainty relation (SUR) [19,20]:
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Here I is the identical operator and O O O Ǐ = − . The uncertainty
inequalities of the types of Eq. (1) and Eq. (2) are often known as
Heisenberg-type and Schrodinger-type uncertainty relations, respectively.

Quantum feedback [21], as a means of controlling the system, is
more and more valued by researchers in the preparation of the special
state. Thus it would be of great interest to investigate the effect of the
quantum feedback control on the tightness of the uncertainty. In this
paper we mainly study the influence of the feedback on the properties
of RUR and SUR, and the relationship between the tightness of the
uncertainty and the mixedness of the system. An outline of the paper is
as follows. In Sec. 2, the physical model a qubit interacting with a
dissipative cavity which provide the feedback to the qubit is introduced.
The effects of the feedback on the tightness and mixedness are studied
in Sec. 3, Finally, Sec. 4 is devoted to the discussion and conclusion.

2. The physical model

The physical model of a single atom resonantly coupled to a single-
mode cavity, which is damped with decay rate κ , will be introduced. As
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shown in Fig. 1.
In the model, we will consider the Markovian feedback [21], with

the control Hamiltonian I t FH = ( )fb , where I t( ) is the signal from the
homodyne detection of the cavity output. In the homodyne-based
scheme, the detector registers a continuous photocurrent and the
feedback Hamiltonian is constantly applied to the system. The master
equation is read as [22,23]

⎡
⎣⎢

⎤
⎦⎥

dρ
dt
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2
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where ρ is the density matrix of the qubit, and
D ρ ρ ρ ρ( ) = − ( + )/2+ + + represents the irreversible evo-
lution induced by the interaction between the system and the environ-
ment.

3. The effect of feedback on uncertainty

An arbitrary Hermitian operator of qubit systems can be denoted by
ε I ε aσ+ ⎯→⎯→

1 2 , where {ε ε,1 2} are real parameters, a R⎯→∈ 3 are unit vectors, and
σ σ σ σ⎯→ = ( )x y z are standard Pauli matrices. If we choose the identity
operator I as feedback, the system will not be affected by tuning the
feedback due to the properties of identity operator. Therefore, in order
not to lose generality, two different Hermitian operators

β σ β σ μσ μ β πλ(sin ( ) +cos ( ) ) and (λ ∈ (−1, 1), ∈(−1, 1), and ∈(0, 2 ))x y z are
selected as the feedback operators to study the effect of different
feedback types on the uncertainty. In order to research the tightness of
the RUR and SUR, we define:
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It is easy to see that the smaller the value of U W( ) is, the better the
tightness of RUR (SUR) is. For the density matrix ρ, the state is a pure
one when ρ ρTr( ) = 1, and Tr( )<12 2 for the mixed one. Denoting

ρ1 − Tr( )2 by Υ, therefore the value of Υ can be employed to detect
the mixedness of qubits states. We can deduce that the bigger the value
of Υ is the bigger the mixedness of ρ is. In the following, we mainly
focus on the effect of feedback and mixedness on the uncertainty
relation from the aspect of tightness. We take A σˆ = x B σˆ = z and choose
superposition state φ α g α e= cos ( ) + sin ( )0 as the initial state in
the following.

3.1. The feedback β σ β σλ(sin ( ) + cos ( ) )x y

The feedback β σ β σλ(sin ( ) + cos ( ) )x y will be studied in this sub-
section. Substituting F β σ β σ= λ(sin ( ) + cos ( ) )x y into Eq. (3), one can
obtain the density matrix:
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with the elements

ρ t λ λ α λ β α( ) = (1 + 2e −(1 + 2 )cos (2 ) + 4 cos ( )sin ( ) )
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ρ t α λ β( ) = − sin(2 )(−2e ξ + 2ie (1+e )sin( ))
4
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in which t tλ tλ β= exp ( +4 +4 cos ( ))2 , λ β= +cos( ), λ λ β= 1 + 2 +2 cos( ),ξ=2

λ β1 + cos ( ) After a simple calculation, we have

A α β λ β β(△ ˆ) = 1 − sin (2 ) (2 cos ( )+ (1 + cos (2 ) + 2e sin ( ) ))
4
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B α λ β(△ ˆ) = 1 − [ cos(2 ) + (e −1)(1 + 2 cos( ))]
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with λ t λ α λ β αℓ = 1 + 2 exp ( ) − (1 + 2 )cos (2 ) + 4 cos ( )sin ( )2 2 2 and
tλ β λ β tλ= cosh ( ) − (cos ( ) + cos (2 ))sinh ( ). According to the

above formulas, one can deduce that:
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which means the tightness of the SUR has a strict linear relationship
with the mixedness of the system and the less the mixedness is the
better the tightness of the SUR is. Therefore we can investigate the
tightness of the SUR by the evolution of the mixedness.

In the following, the influence of the feedback on the tightness of
the RUR and the mixedness of the system will be investigated and we
firstly concentrate on the feedback λσx, namely take β = π/2. Making
use of Eqs. (9), (10), (11) and (13), one can obtain the evolution of U
and Υ with respect to time for different initial state in Fig. 2, here we
take λ = 1.

It is easy to see from Fig. 2 that choosing the superposition state
g e( + )/ 2 can be more effective to enhance the tightness of

uncertainty and reduce the mixedness than choosing excited and
ground one as initial state. In addition, it's easy to find that evolution
of mixedness has almost the same structure with the one of U , which
means there is a proportional relationship between the value of U and
Υ. In other words, the tightness of RUR is inversely proportional to the
mixedness.

As we can see from Fig. 2 the tightness and the mixedness of the
steady state has nothing to do with the initial state we choose. Let
t → ∞ and make use of Eqs. (4), (9), (10), (11) and (13) one can
acquire U = 2Υt→∞ t→∞, that is to say, the tightness of RUR has a strict
linear relationship with the mixedness at the case that the system is in
steady state. The expressions and evolution ofUt→∞ and Υt→∞ are given
as
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As shown in Fig. 3, the tightness and mixedness are only affected by
the value of λ, which represents the feedback strength. In addition, we
can see that the tightness reaches the optimum value while the
mixedness reaches the minimum value when the system has no

Fig. 1. Schematic view of the model, the feedback Hamiltonian is applied to the atoms
according to the homodyne current I(t) derived from detector D.
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