Contents lists available at ScienceDirect

Solid State Communications

journal homepage: www.elsevier.com/locate/ssc

CrossMark

Communication Gd-doping-induced insulator-metal transition in SrTiO₃

Yanni Gu^{a,b}, Sheng Xu^{a,b}, Xiaoshan Wu^{a,*}

^a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
^b Zhangjiagang Campus, Jiangsu University of Science and Technology, Zhangjiagang 215600, China

ARTICLE INFO

Keywords: Insulator-metal transition Ferrimagnetism Gd-doping Density-function theory

ABSTRACT

Recently, insulator-metal transition was found experimentally in Gd-doped SrTiO₃ films. Here, we present firstprinciple investigation on the structural, electronic and magnetic properties of Sr_{1-x}Gd_xTiO₃ within densityfunction theory. The spin-polarized calculations give a diamagnetic insulator at x=0, a ferrimagnetic metal $0.125 \le x \le 0.5$ and a ferrimagnetic insulator x=1 and all Ti ions moments are antiparallel to Gd ions moments. Magnetic Gd-doping distorts the structures of Sr_{1-x}Gd_xTiO₃ films and results in ferrimagnetism. Doped electrons occupy the bottom of conduction bands so that insulator-metal transition occurs. These calculated results are in agreement with available experiments.

1. Introduction

 $SrTiO_3$ is a band insulator, which has a 3.2 eV band gap [1]. It is used widely as thermoelectric devices [2], memory devices [3] and piezoelectric devices [4]. And it has attracted extensive attention owing to many fascinating phenomena it displayed such as ferromagnetism [5], superconductivity [6], structure phase transition [7], two-dimensional electron gas [8], etc.

Conductor electrons were drawn into SrTiO₃ when transition-metal oxides were grown on SrTiO3 such as LaAlO3/SrTiO3 superlattices [9,10]. Additionally, conductor electrons in SrTiO₃ can be induced by oxygen vacancy [11] and substitutional rare-earth ions doping [12–17]. SrTiO₃ with oxygen vacancy underwent insulator-metal transition [11]. which was tempted by the carrier freeze-out effect. Partial substitution in Sr sites with La atoms in SrTiO₃ generated a strongly correlated metal phase [17]. The optically doped $SrTi_{1-x}Nb_xO_3$ was identified as a multi-band s-wave superconductor [12]. Cr doping in SrTiO₃ resulted in insulator-metal transition [18]. Recently, insulator-metal transition also occurred in Gd-doped SrTiO₃ or Sr-doped GdTiO₃ and a ferrimagnetic metal phase was found [16]. Due to the characteristic of insulator-metal transition in doped SrTiO₃, SrTiO₃ has promising applications such as memory device, etc. This makes it important to understand theoretically the nature of insulator-metal transition in doped SrTiO₃.

In order to understand the experimentally-observed insulatormetal transition and ferrimagnetism in Gd-doped SrTiO₃ films [16], we made first-principle calculations on the structural, electronic and magnetic properties of $Sr_{1-x}Gd_xTiO_3$ within density-function theory

* Corresponding author. E-mail address: xswu@nju.edu.cn (X. Wu).

http://dx.doi.org/10.1016/j.ssc.2016.11.013 Received 15 October 2016; Accepted 13 November 2016 Available online 14 November 2016 0038-1098/ © 2016 Elsevier Ltd. All rights reserved. (DFT) based on generalized gradient approximation plus U (GGA + U). The present theoretical results match with available experimental evidence. We interpret well the phenomenon of insulator-metal transition in Sr_{1-x}Gd_xTiO₃ and reveal the origin of ferrimagnetism.

2. Calculation detail

The first-principle calculations of Sr_{1-x}Gd_xTiO₃ (x=0, 0.125, 0.25, 0. 5 and 1) were performed within DFT based on a projectoraugmented wave (PAW) [19] potentials as implemented in Vienna ab-inito simulation package (VASP) [20]. For the exchange-correlation functions, we used GGA+U with the Perdew-Burke-Ernzerhof (PBE) scheme. All calculations were performed with the Hubbard U=5.0 and an approximation of the Stoner exchange parameter J=0.64 applied on d-orbitals of Ti atoms [21]. First, bulk SrTiO₃ and GdTiO₃ were fully relaxed. A 40-atom SrTiO₃ supercell with size 2×2×2 and a 20-atom GdTiO₃ unit cell were used for calculations. Next, Sr_{1-x}Gd_xTiO₃ (0 < x≤0.5) films were fully optimized. A few of Sr atoms in SrTiO₃ supercell were substituted by Gd atoms to calculate Sr1-xGdxTiO3 films. In order to reproduce experiment results [16], the parameters in ab plane were fixed as 7.810 Å, two times of the experimental lattice parameter of SrTiO₃ substrate [22]. The lattice parameter along c axis and all atom positions were fully optimized in $Sr_{1-x}Gd_xTiO_3$ (0 < x < 0.5) films. The plane-wave energy cutoff for the electrons was 400 eV. A 5×5×5 grid of Monkhorst-Pack mesh was used for the k-point sampling in $Sr_{1-x}Gd_xTiO_3$ (0 ≤ x ≤ 0.5) and A 8×8×6 grid in GdTiO₃. Six electrons (2s²2p⁴), ten electrons (4s²4p⁶5d²), four electrons (3d³4s¹) and eighteen electrons 4d⁷5²5p⁶5d¹6s², treated as valence electrons, were for

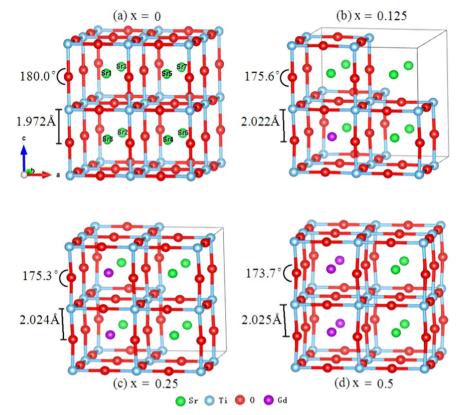


Fig. 1. (Color online) Optimized structures of bulk SrTiO₃ (x=0) and Sr_{1-x}Gd_xTiO₃ films (0 < x≤0.5): (a) x=0, (b) x=0.125, (c) x=0.25 and (d) x=0.5.

Table 1 The lattice parameters, band gaps and magnetic ground states of $SrTiO_3$ and $GdTiO_3$.

	SrTiO ₃		GdTiO ₃ work	
	Experiment	This work	Experiment	This work
a(Å)	3.905[22]	3.945	5.403[23]	5.437
b(Å)	3.905	3.945	5.701	5.782
c(Å)	3.905	3.945	7.674	7.737
band gap(eV)	3.22[1]	2.35	>0[26]	1.90
the magnet- ic ground state	diamagnetic[24]	diamagnetic	ferrimagnetic[25]	ferrimagnetic

Table 2

Magnetic moment at atom sites in the ground state of bulk $\rm SrTiO_3$ and $\rm Sr_{1-x}Gd_xTiO_3$ films.

$\mathrm{Sr}_{1-x}\mathrm{Gd}_x\mathrm{TiO}_3$	Atom sites	magnetic moments (μ_B)
x=0	Ti	0
x=0.125	Ti	-0.036
	Gd	6.801
x=0.25	Ti	-0.246
	Gd	6.785
x=0.5	Ti	-0.446
	Gd	6.747
x=1	Ti	-0.958
	Gd	6.897

the O, Sr, Ti and Gd atoms, respectively. Between successive iterations the electronic calculations were converged to 10^{-5} eV, and the Hellman-Feynman force calculations were converged to less than 10^{-4} eV/Å.

3. Results and discussion

3.1. Structure relaxation and magnetic properties

First, the structures of bulk SrTiO₃ and GdTiO₃ were optimized. SrTiO₃ is a typical cubic structure with Pm-3m space group [22] while GdTiO₃ has a highly distorted perovskite structure with Pbnm space group [23]. The experimental lattice parameter a=3.905 Å is for SrTiO₃ [22] and a=5.403, b=5.701, and c=7.674 [23] are for GdTiO₃. As shown in Fig. 1(a), TiO_6 octahedral has a cubical structure where Ti atom is at the center and O atoms are at the ends of the edges. The parameters a, b and c, the ground states and band gaps are listed in Table 1. The calculated lattice parameters of a=3.945 Å for SrTiO₃ and a=5.437 Å, b=5.782 Å and c=7.737 Å for GdTiO₃ are in reasonable accordance with the previous experimental values [22,23]. The ground states of SrTiO₃ and GdTiO₃ are diamagnetic and ferrimagnetic insulators, respectively, in agreement with experimental results [1,24-26]. The total energy of A, G and C-type antiferromagnetic configuration of GdTiO₃ are higher than the ferrimagnetic structure by 0.05, 0.81 and 0.82 eV per formula. Ferromagnetic GdTiO₃ converges to ferrimagnetic state, where all Ti ions moments are antiparallel to those of Gd ions. As shown in Table 2, the calculated magnetic moments in GdTiO₃ are $-0.958\mu_B/Ti$ and $6.897\mu_B/Gd$.

Second, $Sr_{1-x}Gd_xTiO_3$ films (x=0.125, 0.25 and 0.5) were calculated. The present calculated results show that the ground states of the $Sr_{1-x}Gd_xTiO_3$ films are ferrimagnetic, where all moments of Ti ions are antiparallel to those of Gd ions. In order to reproduce experimental results [16], the parameters within the ab plane were fixed as 7.810 Å, namely, two times of the experimental lattice parameter a of $SrTiO_3$ substrate. Then the lattice parameter along c axis and all atom positions are fully optimized. All optimized structures of the ground states in $Sr_{1-x}Gd_xTiO_3$ films (x=0.125, 0.25 and 0.5) are shown in Fig. 1. Green, blue, red and purple spheres represent Sr, Ti, O and Gd atoms, respectively. Three different types [27] of structures were modeled for $Sr_{0.25}TiO_3$, which were constructed by substituting

Download English Version:

https://daneshyari.com/en/article/5457306

Download Persian Version:

https://daneshyari.com/article/5457306

Daneshyari.com