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A B S T R A C T

We investigate numerically the integer quantum Hall effect in a three-band triangular-lattice model. The three
bands own the Chern number C=2,−1,−1, respectively. The lowest topological flat band carrying Chern number
C=2, which leads to the Hall plateau σ e h= 2( / )H

2 . This Hall plateau is sensitive to the disorder scattering and is
rapidly destroyed by the weak disorder. Further increasing the strength of disorder, the gap of density of states
always disappears before the vanishing of the corresponding Hall plateau. The scaling behavior of quantum
phase transition between an insulator and a quantum Hall plateau is studied. We find that the insulator-plateau
transition becomes sharper with increasing the size of system. Due to the different of edge states, the critical
energy Ec1 gradually shifts to the center of Hall plateau while Ec2 is unaffected with increasing the disorder
strength.

1. Introduction

The integer quantum Hall effect (IQHE) is discovered experimen-
tally by Kliziting in 1980 [1], in which the transverse Hall conductivity
of a two-dimensional (2D) system of electrons is found to have plateaus
in the presence of a strong perpendicular magnetic field [1,2].
Immediately after this discovery, scientists from various disciplines
were launched into a frenzy of activity to understand the underling
physics and also to explore its technological importance in designing
different electronic devices. The first theoretical work on this effect was
put forward by Laughlin [3] based on a gauge-invariance argument,
and further theoretical elaboration was made possible through the
picture of edge states by Halperin [4]. However, it is also natural to
explain the realization of the IQHE by explicit calculations based upon
the linear-response Kubo formula for periodic systems [5]. The
electron energy spectrum is split into discrete Landau levels. If the
Fermi level lies exactly between two Landau levels, the Hall conduc-
tance can be labeled by topological Chern number in units of e2/h and
be accurately quantized to an integer.

The Anderson localization theory [6,7] predicts that non-interacting
electrons in 2D disordered system in the absence of a magnetic field are
generally localized with time-reversal and spin rotational symmetries.
However, the time-reversal symmetry is broken by external magnetic
field, and a series of Landau bands appear due to disorder. The
interplay between magnetic field and disorder is an essential issue

for the phenomenon of IQHE. There are many theoretical studies
focusing on the existence of a plateau-insulator transition [8–11] in 2D
electronic system with an external magnetic field. The energy spectrum
in a uniform magnetic field for a square lattice was investigated by
Hofstadter [12] and since then the electronic properties of 2D periodic
lattice structures immersed in a uniform magnetic field have drawn a
lot of interests and been hot topics among theoreticians [11,13–22].
Sheng et al. [11,14–16] studied the IQHE at strong disorder and weak
magnetic field in the tight-binding lattice model, where the systematic
float-up and merging picture for extended level was found. The Scaling
behavior of the quantum phase transition between an insulator and a
quantized Hall plateau state or between two adjacent plateau states has
been examined by realizing landau levels. A nonzero integer Chern
number distinguishes an extended state from a localized state (Chern
number is zero) in the system. So they suggested that topological
characterization in terms of Chern integers provide a simple physical
explanation and gives a qualitative difference between the lattice and
continuum models.

Though most of the theoretical studies based on the lattice structure
with a uniform magnetic field has been performed, a very few
theoretical works [23–25] are available where the multi-band lattice
model has been used. However, the effects of the disorder strength on
the transition between an insulator and a quantum Hall plateau and
the scaling behavior of the quantum phase transition have not been
studied in the multi-band lattice model. We wish to address these
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issues in the present work.
In this paper, we will study in detail numerically the Hall

conductance and density of states (DOS) using the exact diagonaliza-
tion method and Kubo formula. The model and theoretical method are
described in the next section while the numerical results and related
discussions are given in Section 3. In Section 4 our results are briefly
summarized.

2. The model and theoretical method

We consider a 2D triangular-lattice as shown in Fig. 1. It is
characterized by three single-particle bands (A, B and C) per unit cell.
Creation (aij

+, bij
+, cij

+) and annihilation (aij, bij, cij) operators are
introduced, where i(j) stands the site index along the direction of
arrow. The tight-binding (TB) Hamiltonian is employed to describe our
system and it reads as
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where the nearest-neighbor and next-nearest-neighbor hoppings are
considered in Eq. (1), wijis a disorder potential energy uniformly
distributed between W W(− /2, /2) on site (note that the disorder
strength W here is as big as that defined in Ref. [11]), t t( ′) is the
hopping integral between the nearest (next-nearest) neighboring sites,
ϕ is the azimuthal angle for the vector connecting hopping.

Assuming that the lattice is composed of N1 and N2 number of sites
along the i- and j-directions, respectively, where N2 is a multiple of 3,
and the total number of lattice sites is N N N= ×1 2. With the choice of
W = 0 and employing the Fourier transform
c k k c e( , ) = ∑x y N N i j ij
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we adopt the parameters t = 1, t′ = 1/4, ϕ π= 2 /6, and use the
periodic boundary conditions. The energy spectrum of the triangular-
lattice is shown in Fig. 2(a) and (b). It is found that the topological flat
band states are well created and the two gaps are verified between sub-
bands.

After the numerical diagonalization of the Hamiltonian (Eq. (1)),
the Hall conductance can be calculated by using the Kubo formula
[5,13]:

Fig. 1. Schematic diagram of a 2D triangular-lattice with three single-particle bands
labeled by pink (A), green (B) and blue (C)circle dots, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. The energy spectrum of the 2D triangular-lattice model. (b) is the cut plane of (a). The lowest topological flat band is obtained.
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