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A B S T R A C T

Pragmatic ways of including lifetime broadening of collective modes in the electron liquid are critically
compared. Special focus lies on the impact of the damping parameter onto the dispersion. It is quantitatively
exemplified for the two-dimensional case, for both, the charge (‘sheet’-)plasmon and the spin-density plasmon.
The predicted deviations fall within the resolution limits of advanced techniques.

1. Introduction

The study of plasmons, the collective oscillations of electrons, has a
long and successful history [1,2]. Their coupling to light in nano-
structures, known as ‘plasmonics’, holds high promise for revolutionary
applications [3], where the performance of actual devices is crucially
limited by metallic losses [4]. An undemanding inclusion of a plas-
mon's damping via a constant, irrespective of the losses' origin(s), is
commonly achieved via a Drude type dielectric function [2]. The
response of charges, however, is nonlocal, which is the more important
the smaller the size of the nanoparticles is.

The random phase approximation (RPA) [2], historically a mile-
stone, provides a dielectric function explicitly depending on both,
frequency ω as well as wave vector q. Its failure to include finite lifetime
effects was treated early by Mermin [5], his approach still being widely
applied. Recent examples in bulk systems include calculations of the
electrons' inelastic mean free path [6], stopping power [7], and a
generalization to spin wave damping [8]. In layers, it has been
employed, e.g., to obtain quasi-particle properties [9] of the two-
dimensional electron gas (2Deg), or when accounting for inter-band-
excitation losses in graphene [10].

Major techniques for studying the charge response to external
perturbations are scattering experiments [11] and, for long wave-
lengths, optical measurements. They yield the same dispersion only for
an undamped plasmon; for realistic lifetimes slightly different results
are obtained.1 This discrepancy in the plasmon dispersion ω q( )pl
increases with its linewidth (often broadening with q). Consequently,
comparing theory and high-resolution experiments needs appropriate
caution.

Forefront scattering data for dispersion and damping are known for
metallic monolayers [12–14] and semiconductor quantum wells

[15,16]. Many 2Degs being rather dense [17], RPA predictions are
sufficiently accurate, once damping effects are built in effectively. The
2Deg, our prototype, shares the vanishing of ω q( → 0)pl with graphene.
There, too, the plasmon was studied with optical as well as scattering
methods [18–22] (plasmons in graphene are thoroughly reviewed in
[23,24]).

Mermin's approach conserves the local electron number, invoking
just a single additional constant η (the inverse lifetime τ). Extensions
further conserving local energy and momentum were developed (and
applied to a two-component plasma) by Röpke [25–27], and, indepen-
dently, by Atwal and Ashcroft [28]. These sophisticated theories yield
intricate response functions with a wave vector dependent linewidth, as
also found in [29]. But in view of realistic materials an uncomplicated
RPA extension incorporating plasmon lifetimes via a phenomenological
(potentially q-dependent) parameter is preferential. Describing damp-
ing irrespective of the microscopic mechanism(s), phenomenological
life times can be taken from both, experiments or published data from
theories, which cannot be easily recreated.

The purpose of this work is to critically compare other simple
approaches with that of Mermin, and to study the resulting plasmon
dispersions. Deviations from the classical plasma frequency, ωp , turn
out larger than expected.

After briefly discussing general aspects in Section 2, we present
quantitative (zero temperature) results (both in RPA and beyond) in
Section 3 for a 2Deg. There, the vanishing of ω q( → 0)pl implies a
comparably high relative width, also in case of rather weak damping.
Finally, we study the spin-density plasmon in the partially spin-
polarized case in Section 4. For Fourier Transforms conventions are
as in [1].
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2. Theoretical overview

A plasmon is conventionally obtained from the complex dielectric
function iϵ = ϵ + ϵI II via these, closely related but not exactly equal
definitions:

• as a maximum in the double differential scattering cross section
[12,16],

q ω
Im −1

ϵ( , )
= max;

pl
(a)

(1a)

• as the vanishing of the complex ϵ for complex ω [28], determining
reflection coefficients (purely oscillatory waves change to decaying
ones)

q ω iω ω ωϵ( , + ) = 0, ≡ ;I II pl
(b)

I (1b)

• often approximated as the zero of Re ϵ with real frequencies [21],

q ωϵ ( , ) = 0;I pl
(c)

(1c)

(the approximation being justified if ω ω≫I II, and ωpl
(c) is always

lower than ωpl
(a,b) [30]),

• or, if the phase shift is not relevant, as minimal magnitude of ϵ
(implying a maximal electric field),

q ωϵ( , ) = min.pl
(d)

(1d)

The Drude model [2] for charge carriers with a classical plasma
frequency ωp reads q ω ω ω ω iηϵ ( , ) = 1 − / ( + )pDru

2 . Here, ωpl
(a) and ωpl

(b)

differ <1% for η even as large as ωp, but conditions (1c–1d) yield clearly
distinct values, unless η is rather small. The criterion appropriate to the
setup must be chosen for cutting edge experimental resolutions.
Typical values reported [12,14] are ∼10 meV (roughly 10% of ωpl),

ω~25…125 meV ≈ 10…50% of pl [19] and ∼ 100 meV [31]. By definition,

(1a) yields a symmetric Lorentzian near ωpl
(a), whereas expansions

around ωpl
(b−d) contain first order terms in the denominator, too:
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Clearly, the discrepancy in differently computed ωpl-values depends
on the specific q ωϵ( , ) used. Some common forms are given next.

The linear response of an electron liquid to external perturbations
in RPA-type approaches reads

q ω v q χ q ωϵ ( , ) = 1 − ( ) ( , );RPA
0 (3)

here, v q( ) denotes the Coulomb interaction, and χ q ω( , )0 the density–
density response function of non-interacting fermions [1]. It shows the
typical electron–hole (e/h) excitation band in the q ω( , )-plane. An
adiabatically turned on perturbation corresponds to ω ω i→ + 0+. This
ensures causality, but yields an undamped plasmon. An obvious idea to
include damping is to use χ q ω( , )∼0 with ω ω iη≡ +∼ and inverse lifetime
η τ≡ 1/ ,

q ω v q χ q ωϵ ( , ) ≡ 1 − ( ) ( , ).∼
Lin

0 (4)

This also broadens the e/h band (as χ q ωIm ( , )∼0 , at any q, only vanishes
when ωτ| | ≫ 1). It catches the eye that Eq. (4) alters the static response

q v q χ q iη ω ηϵ ( , 0) = 1− ( ) ( , ) ⟶ 1 + /
q pLin

0
→0

2 2
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violating q v q N Eϵ( → 0, 0) = 1 + ( ) ( )F (the perfect screening sum rule,
N E( )F is the density of states at the Fermi energy). The correctness of

this limit may be of less importance for plasmonic applications, which
are far from static.

Mermin [5] corrected the deficiency. He deriv"ed
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Albeit elegant, analytical calculations with Eq. (6) quickly get cumber-
some, in particular when the relations are meant as matrix equations
(2×2 for spin-dependent screening or electron–hole liquids, infinite
matrices in reciprocal lattice vectors of crystals). Note that (6b) does
not yield, as it should, the classical plasmon for long wavelengths,

ω q ω( → 0)
↛

,ppl
(b)

Me (7)

neither in the bulk nor for the 2Deg [28] (there, also ω q( → 0)pl
(a) shows

a mismatch with the q − dependence, cf. Fig. 1).
Comparing approaches with the structure of (6a) but arbitrary ω

instead of ω∼ is worthwhile,

q ω v q χ q ω
iηg q ω

ϵ ( , ) ≡ 1 − ( ) ( , )
1 + ( , )

.g

0

(8)

The elementary choice g ω E≡ sgn( )ℏ/1 I F (i.e. simply adding a constant
to the RPA's susceptibility denominator, with a sign function for proper
symmetry), serves to enhance a long-lived plasmon's visibility in
graphical representations. The dielectric function with g ω≡ 1/D re-

duces to the Drude model for ω q m≫ ℏ /22 (m is the effective electron
mass). For the optical conductivity σ this implies
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To achieve an interpolation between static RPA screening and the
Drude case we propose the form

g ω ω
ω E

( ) ≡
+ /ℏ

.E 2
F
2 2F (10)

The main deficiency of this ansatz is to violate the f-sum rule (due to
additional poles at ω iEℏ = ± F),
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When the focus lies on plasmon properties (e.g. the q-dependence), this
can be acceptable: No large frequency range (often inaccessible anyhow
[32]) needs to be measured for comparing peak positions and widths.

Both, ϵMe and ϵLin fulfill Eq. (11), for the latter occasionally reported
otherwise [7]. The contour for the integration (11) in the complex
ω ω( , )I II -plane is taken along the quarter circle enclosing the first
quadrant. For a purely real integration kernel on the ωII-axis only the
arc contributes, provided Im ϵ−1 is analytic in the upper half plane (as it
should) [1]. The RPA response function obeys these conditions. From
its high frequency expansion,

q ω ω ωϵ ( → 0, | | → ∞) ≈ 1 − /| | ,pRPA
2 2

(12)

it follows that ϵLin also fulfills the f-sum rule. While state-of-the-art
approaches [25–28] satisfy the widest set of sum rules and treat
electron correlations properly, impurity scattering still has to be
accounted for phenomenologically.

Note that the static structure factors S q( ) obtained from the above
dielectric functions via

∫ d ω
π q ω

v q S q(ℏ ) Im −1
ϵ( , )

= ( ) ( )
0

∞

(13)

differ for each approach. For a meaningful comparison of scattering
intensities, their normalization by S q( → 0) appears advisable.
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