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A B S T R A C T

Molecular dynamics simulations were performed to investigate the effect of the enthalpy of mixing on the atomic
level structure and plasticity of binary metallic glasses by using an ideal model potential. Whereas some model
alloys with a strong positive enthalpy of mixing solidified into mixtures of microcrystalline domains of face-
centered cubic or hexagonal close-packed crystal structures, the other alloys solidified into amorphous struc-
tures. Various structural properties of the amorphous alloys were analyzed as a function of the enthalpy of
mixing interaction parameter. The deformation behavior of the amorphous samples was discussed in terms of
atomic-level structural features such as the fraction of icosahedral clusters, the degree of short-range ordering
and potential energies of atomic clusters in order to find a clue on the relationship between the mechanical
properties and atomic structure of the amorphous alloys.

1. Introduction

Metallic glasses are essentially frozen supercooled liquids and show
exotic properties such as high strength, high elastic limit, good corro-
sion and wear resistance, and soft magnetic properties. Consequently,
they have been considered as candidates for new structural and func-
tional materials [1–5]. Due to a liquid-like long-range disordered
structure and lack of dislocations, plastic deformation in metallic
glasses is different from those in crystalline materials. For example,
deformation in metallic glasses is usually localized in the nanoscale
regions of shear bands, which leads to limited plastic flow and mac-
roscopically brittle behavior. This could be one of the major issues that
hinders engineering applications with metallic glasses [6–9].

The relationship between atomic structures and mechanical properties
in metallic glasses has not yet been clearly understood due to the com-
plexity of their disordered atomic structures compared to crystalline al-
loys [9–11]. Whereas the microstructures in crystalline alloys are well
described in terms of phase, defects, and size distribution (all of which can
be probed in detail with currently available techniques), the structure of
metallic glasses cannot be described with a standardized form because the
atoms in them are randomly distributed without long-range order.

Due to the difficulty in probing the atomic structure of metallic
glasses, molecular dynamics simulations have been used to correlate
their mechanical properties with their atomic structures [9]. Significant
progress has been achieved in clarifying their atomic level structures
and intrinsic deformation behavior, and according to previous mole-
cular dynamics studies [9–19], the atomic structure of metallic glasses
can be analytically described by combinations of various polyhedral
packing units. Among them, icosahedral clusters (ICs) play a key role in
the intrinsic plasticity of metallic glasses. Denoted by the Voronoi index
0,0,12,0 , ICs possess high atomic packing density and are known to be
mechanically and energetically more stable than other types of poly-
hedral packing units [12,20]. The fraction of and connectivity between
ICs are reported to be correlated with the simulated plasticity of the
metallic glasses in alloy systems [9,11–19].

For controlling the population of ICs in metallic glasses, the key
property could be the average atomic size ratio between center atoms
and their surrounding neighbors. This can be manipulated by several
factors, such as the number of components, the atomic size ratio be-
tween the major constituent elements, and the enthalpy of mixing.
These parameters are also well-known key factors in empirical rules
[21–25] that are not only critical to the glass forming ability of alloys
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but also influential on the mechanical properties and deformation be-
havior of the fabricated metallic glasses. However, the effects of the
enthalpy of mixing property on the deformation behavior of metallic
glasses is not yet well understood.

In experimental studies of real metallic glass systems, it is difficult
to see the effect of specific properties such as atomic size and enthalpy
of mixing on plastic deformation behavior since many factors are op-
erating simultaneously. Thus, the effect of a specific parameter cannot
easily be separated from those of the other parameters. In this study, we
focus on the effect of the enthalpy of mixing property on the glass
forming ability, local atomic structure, and comprehensive plasticity of
binary metallic glasses.

2. Computer simulations

2.1. Interatomic potential model for binary alloys

The interaction between elements A and B is described by Voter
potential scheme in the framework of embedded-atomic method (EAM)
models. The binary alloy potential model for the molecular dynamics
simulations can be expressed as [26].
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where F ρ( )si is the energy associated with embedding atoms of type si in
a uniform electron gas of density ρ and ϕ r( )s s‐i j is the pairwise inter-
action between atoms of type si and sj separated by a distance r.

Within Voter's formalism [27], the electron density is given by
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where the atomic electron density function f (r) is taken as the density
of a hydrogenic 4s orbital:
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Here, β is an adjustable fitting parameter that quantifies the distance
over which the electron density decays away from an atom position and
f0 is a prefactor. Although the latter can be an arbitrary value for a
unary system because it cancels out when combined with the embed-
ding function, it is an adjustable parameter that should be determined
for an alloy system.

The pair potential ϕ(r) between atoms i and j takes the Morse po-
tential form

= − −− − − −ϕ r D e e( ) [2 ],M
α r R α r R( ) 2 ( )M M M M (4)

where DM, RM, and αM are adjustable fitting parameters that define the
well-depth of the Morse pair-interaction, the position of the minimum,
and a measure of the curvature at the minimum, respectively.

As a final step, the embedding function F (ρi) is numerically de-
termined so that the total energy of the reference system (here, it is set
to be a face-centered cubic (fcc) crystal) as a function of dilation sa-
tisfies the following universal binding energy relationship: [26]

⎜ ⎟ ⎜ ⎟= − ⎡
⎣⎢

+ ⎛
⎝

− ⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

− ⎛
⎝

− ⎞
⎠

⎤
⎦⎥

E a E α a
a

α a
a

( ) 1 1 exp 1 ,0
0 0 (5)

where E0 is the cohesive energy, α is the exponential decay factor for
the universal energy function, a is the dilated lattice constant, and a0 is
the equilibrium lattice constant.

Within the above formalism, we have seven adjustable parameters
(α, β, DM, rM, αM, E0, and a0) to be determined for a single-component
potential. For a simpler potential model for idealized elements, we first
assign a set of values for three of the parameters: α = 5.0, β = 4.0, and
αM = 5.0 so that the potential model can roughly present a typical
range of properties for fcc metals. Secondly, DM and rM from the Morse
pair interaction are related to the effective bond-dissociation energy ε0

and the equilibrium interatomic distance r0, respectively, as follows:
DM = 1∕3ε0, rM = r0 (note that ε0 is defined as having a positive value,
thus the effective potential energy per bond is − ε0). Likewise, the
cohesive energy ε0 and the equilibrium lattice constant a0 are set as
E0 = 6ε0 and =a r20 0, respectively. Finally, for the model fcc metals,
there remain only two adjustable parameters: ε0 and r0, which can be
compared respectively to the equilibrium interatomic distance =r σ( )6

and potential well-depth ε in Lennard-Jones models, and similarly re-
spectively represent the effective bond energy between atoms and the
equilibrium interatomic distance.

The potential interactions are smoothly cut-off at r = rcut (usually
between the third- and fourth-nearest-neighbor shells of a static fcc
crystal) to ensure that the interatomic potential and its first derivatives
are continuous.

Similar to the Lennard-Jones models, our model potential can be
easily extended to binary or multicomponent alloy systems by using
combinations of the two adjustable parameters: ε0 and r0. For instance,
we can have three pairs of ε0 and r0 for an AB binary alloy: (εA-A,rA-A),
(εB-B,rB-B), and (εA-B,rA-B). (As in the unary case, αM for pairwise inter-
actions was fixed to 5.0 regardless of species).

For unary interactions, rs s‐i j and εs s‐i j (si,j = A or B) indicate a measure
of atomic size and binding energy, respectively, and appropriate values
can be independently assigned to the parameters rs s‐i j and εs s‐i j for either
material A or material B. In this work, the equilibrium interatomic dis-
tance r0 and the effective bond-dissociation energy ε0 were set as follows:
rA = 3.2 Å, rB = 2.56 Å, and εA−A = εB−B = 0.5 eV. Note that the
atomic size ratio rB∕A (= rB∕rA) was set to 0.8. On the other hand, εA−B

and rA−B represent the effective bond-dissociation energy and intera-
tomic distance, respectively, for the cross-species interaction and thereby
can be a function of the combined properties of elements A and B. Here,
for simplicity, we fixed rA−B to be an arithmetic average of rA−A and
rB−B, i.e., rA−B = (rA−A + rB−B)∕2 = 2.88 Å. However, εA−B can be
varied within a range of values depending on the relative bond strength
between cross-species, i.e. enthalpy of mixing property of the alloy.

In order to represent a set of binary alloys with various values of
enthalpy of mixing, a single dimensionless parameter ω̂ was defined as
follows:
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As a normalized form, ω̂, called enthalpy of mixing interaction
parameter, is similar to the one in quasi-chemical or regular solution
models. For instance, if we consider a nearest-neighbor lattice model
with fixed bond-dissociation energies εs s‐i j for si − sj pair types (like
regular solution models), the enthalpy of mixing for random solid so-
lutions will be ≃ΔH ωε z X Xˆ A Bmix 0 , where z and Xi are the number of
bonds per atom (coordination number (CN)) and the mole fraction,
respectively. Note that since we fixed εA−A = εB−B = 0.5 eV, ω̂ is an
explicit function of εA−B, i.e., = − − ∕ω ε εˆ ( ) ( 0.5) 0.5A B A B‐ ‐ and vice versa
( = −ε ω ω( ˆ ) 0.5(1 ˆ)A B‐ eV).

The more negative the value of ω̂, the stronger the negative en-
thalpy of mixing of the alloy system. However, unlike in quasi-chemical
models of fixed lattice and constant bond energy, enthalpies of mixing
ΔHmix of general binary alloys in molecular dynamics simulations are
dependent on the actual atomic configuration in complicated ways. In
fact, the enthalpy of mixing ΔHmix is determined by combination of
parameters such as rs s‐i j, εs s‐i j, and the composition. In the case of a large
atomic size mismatch, ΔHmix is substantially positive when =ω̂ 0.
Nevertheless, the interaction parameter ω̂ is a good measure of enthalpy
of mixing for binary alloys and plays as a key factor in our simulation
study. In this work, we varied ω̂ from −20% to +10% to investigate
the effect of the enthalpy of mixing on the atomic level structure and
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