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A B S T R A C T

Based on the secant modulus and extended Mori-Tanaka method for dual ductile phases, a micromechanics
model is proposed to predict the monotonic mechanical behaviors of bulk metallic glass matrix composites
(BMGCs) toughened by particles. In this model, the deformation behaviors of the BMG matrix and particles are
described by the use of the free volume model and the simple Ludwik flow equation, respectively, and Weng's
homogenization frame is adopted to bridge the constituents and the composites. As compared to the existing
relevant models, the present model is much more convenient for applying, and more readily to be extended. The
developed model is applied with stain-controlled loading, and is verified by modeling the monotonic stress–-
strain relations of particle toughened BMGCs. The predictions were in good agreement with the experiments
from the literature, which confirms that the developed analytical model is capable of successfully describing the
mechanical properties, such as yield strength, stress hardening and strain softening elongation, of composites.

1. Introduction

Bulk metallic glass matrix composites (BMGCs) are commonly uti-
lized to effectively circumvent the poor damage tolerance of the pure
BMGs. Up to now, the drastic changes in the production method and
material form also lead to a significant extension of application fields of
glassy alloys. Despite the fact that a large number of researches have
already been performed and many qualitative conclusions were
reached, we, however, are far away from a complete and thorough
understanding of the fundamental synergic mechanisms governing the
compatible deformations between the soft and ductile second phase
reinforcements and the hard and brittle matrix in BMGCs.

Analytical models are more efficient than those numerical methods,
but lag far behind the experiments and simulations. Based on the
principle of thermodynamics and free energy, Marandi et al. [1] de-
veloped an elastic-viscoplastic, three-dimensional, finite deformation
constitutive model to describe the large deformation behavior of
BMGCs, but their model is fairly complicated and short of the micro-
mechanics significance. Marandi et al. [2] established an elas-
tic–viscoplastic, three-dimensional, finite deformation constitutive
model to describe the behavior of La-based in-situ BMGC (In-situ com-
posites are multiphase materials where the reinforcing phase is syn-
thesized within the matrix during composite fabrication), within the
super-cooled liquid region, at ambient pressure and a range of strain
rates. Yang et al. [3] developed a constitutive model of BMG plasticity
which accounts for finite deformation kinematics, the kinetics of free

volume, strain hardening, thermal softening, rate-dependency and non-
Newtonian viscosity. The model has been validated against uniaxial
compression test data; and against plate bending experiments. Qiao
et al. [4] firstly gave a micromechanics based model to elucidate the
work-hardening behavior of ductile dendrites and softening of the
amorphous matrix, and could fatherly simulate the tensile response of
BMGCs, yet the interaction between two phases was not well con-
sidered. Only quantitative relations can further greatly improve the
ductility/toughness of BMGs via efficiently tailoring the micro-
structures in an optimized manner. It is impeding to establish quanti-
tative relations between microstructure parameters and material
properties at the mesoscopic scale. Recently, Sun et al. [5] improved
their previous micromechanics model to better predict the tensile be-
haviors of in-situ BMGCs based the in-situ measured data by the nano-
indentation test.

Doghri et al. [6] once proposed a general formulation for the mean-
field method of elasto-viscoplastic composites. The evolution equations
for inelastic strain and internal variables at the very beginning of each
time interval are linearized with the ending time of the same interval,
and then numerically integrated through a fully implicit backward
Euler scheme, which results in thermoelastic-like relations directly in
the time domain, and not in the Laplace-Carson one. Their method can
be readily applied to sophisticated elasto-viscoplastic models with an
arbitrary set of scalar or tensor internal variables, and is valid for multi-
axial, non-monotonic and non-proportional loading histories. Guo et al.
[7] further extended this method to describe the stress–strain responses
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of composites under a stress-controlled cyclic loading. With the help of
this homogenization formulation, Rao et al. [8] proposed a new meso-
mechanical constitutive model to predict the monotonic tensile or
compressive deformation of BMGCs with toughening phases. Since both
algorithmic tangent operator and the affine strain increment should be
firstly given, their analytical model appears very complicated in the
form. Jiang et al. [9–11] regarded the shear bands as micro-cracks, and
established their equivalence relation, finally developed two micro-
mechanics models based on the incremental tangent stiffness and secant
modulus, respectively. Their results demonstrate that these analytical
models are capable of successfully capturing the main features, such as
yield strength, strain hardening and stress softening elongation, of
ductile particles filled BMGs. However, these models cannot involve the
inherent essence in the deformation features of the BMG matrix. Re-
cently, Ge et al. [12] embedded Mg nanocrystalline cores in amorphous
glassy shells, and proposed a constitutive model to reflect the block
effect by the crystalline phase on the propagation of localized shear
bands. It is expected that only quantitative relations can further greatly
improve the ductility/toughness of BMGs via efficiently tailoring the
microstructures in an optimized manner. Therefore, establishing a
quantitative relation between microstructure parameters and material
properties is impeding and necessary.

Although many theoretical studies have been performed and shed
insight into the mechanical behaviors of BMGCs, a simple micro-
mechanics model is still needed to describe their intriguing experi-
mental results. In this work, the deformation behaviors of the BMG
matrix and particles are described by the use of the free volume model
and simple Ludwik flow equation, respectively, and Weng's homo-
genization frame is adopted to establish the interaction between the
constituents and the composites. Against the other models, the present
model is much more convenient for applying, and more readily to be
extended. The developed model is applied with stain-controlled
loading, and is verified by modeling the monotonic stress–strain rela-
tions of particle toughened BMGCs.

2. Micromechanics model of BMGCs

The BMGCs consist of BMG matrix and ductile particle phase, and
the stress–strain relations of the two constituents should be described
by using suitable constitutive models. For such dual-phase composites,
where both phases are able to undergo plastic flow, Weng [13] devel-
oped a elegant theoretical model to estimate the stress–strain relations
of the composites, and later modified by Zhu [14]. Their formulas will
be used as the basis of a new homogenization method for BMGC, a
perfect interfacial bonding between two phases is assumed. For the
dual-phase composites, the particle phase will be referred as phase 1
and BMG matrix as phase 0, and those of the composite are denoted by
symbols without any script. All the tensors and vectors are written in
boldface letters. The volume fractions of the particles and matrix are
denoted by c1 and c0, respectively, and satisfy the relation c1 + c0 = 1.

2.1. Constitutive model of BMG matrix

The shear band formation and evolution leads to the fundamental
deformation mechanisms in BMGs. At the microscopic level, shear band
formation is believed to be associated with the evolution of the local
structural order. One atomistic mechanism capturing shear band for-
mation and evolution in BMGs is the free volume model proposed by
Spaepen [15] and later extended by Steif [16]. From the continuum
mechanics point of view, the shear band is a result of strain softening
and regarded as a strain-localization phenomenon. This model treats
the free volume as an internal state variable to characterize the struc-
tural evolution at the atomic level in BMGs.

According to a J2-type, small strain visco-plasticity framework, the
free volume model can be generalized into multi-axial stress states. The
total strain rate in the BMG is expressed by
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where f0 is the frequency of atomic vibration; ΔGm is the activation
energy; kB is the Boltzmann constant; T is the absolute temperature; Ω is
the atomic volume and ξ is the concentration of free volume. The free
volume evolution equation under multi-axial stress states is rewritten as
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where α0 is a geometrical factor of order unity; ν* is a critical volume; S
is the Eshelby modulus, given by S = 2(1 + v)μ/3(1–v); v is Poisson's
ratio; μ is the shear modulus; and nD is the number of atomic jumps
needed to annihilate a free volume equal to ν* and is usually taken to be
3–10.

2.2. Constitutive model of ductile particles

The Ludwik equation is adopted for the ductile particles in terms of
von Mises' effective stress and plastic strain
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p n (5)
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p 1/2, σy, h and n are the initial yield stress,

strength coefficient and the work-hardening exponent, in turn, and
these three constants can be determined by fitting with a tensile
stress–strain curve. In addition Hencky's flow rule is adopted here,
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2.3. Homogenization method for BMGCs

For the dual-phase composites, Weng's model is adopted here to
establish the relationship among ductile particles, matrix and the re-
sulting composites under monotonic uniaxial loading. The detailed
deviation is very lengthy, and can be found in the original work [13].
The relationship between the hydrostatic and deviatoric strains of
BMGCs are expressed as follows:
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where α s
0 , β s

0 are the components of Eshelby's tensor for spherical in-
clusions, and defined as
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and κ, μ denote the bulk and shear moduli, and are written as follows to
meet the isotropic relations,
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