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A B S T R A C T

A model of temperature dependent shear modulus and Young's modulus in bulk metallic glasses is established.
The inherent relationship between the glass transition temperatures, the Debye temperature and shear modulus
of bulk metallic glasses is revealed. The temperature dependent shear modulus can be predicted by our model
without any fitting parameter. The model is presented based on a critical energy density criterion for plastic
yielding which is derived from fundamental thermodynamics. This critical energy density consists of two parts:
the heat added to the system and the input of mechanical energy, which are not completely equivalent. The
agreement between theoretical results and experimental results is striking. And it is found that the temperature
dependent Young's modulus could also be predicted pretty well by our model.

1. Introduction

Owing to the absences of defects such as dislocations and grain
boundaries, the bulk metallic glasses (BMGs) have been reported to
possess ultrahigh strength, high toughness and high wear resistance.
There has been a substantial interest in the superior mechanical prop-
erties of BMGs in the past few decades. A lot of effort has been devoted
to reveal the primary deformation units and clarify yielding behavior as
well as the deformation mechanisms in BMGs [1–5]. The deformation
and flow properties of BMGs are well described by the shear models
with the result that shear modulus is expected to yield important in-
formation about their mechanical properties [6,7]. General metal ma-
terials become very brittle at low temperature, but BMGs still have
excellent performance. Special types of metallic glasses are being de-
veloped for space exploration, which has excellent wear resistance, high
strength, and can be used at extremely low temperature. Thus, the
understanding of how temperature affects the mechanical properties of
amorphous structure is, therefore, of considerable interest to the future
design of BMGs with desired mechanical properties.

The temperature dependence of elastic moduli has been studied for
a long time. Recently innovative experimental technologies are being
actively developed for the temperature dependence of elastic moduli
[8–10]. But the early classical phenomenological models continue to be
used [11,12], which contain more or less fitting parameters. Although
there are some new theoretical methods to predict the temperature
dependence of elastic moduli of crystalline materials [13–16]. The

elastic properties of amorphous substance are relatively less under-
stood. In the past few years, many significant research efforts have been
also devoted to the study of the elastic moduli of BMGs [17–22]. Wang
et al. found that there is a close links between the molar volume (or
micro-structure) and elastic moduli of BMGs [19]. Wu et al. established
a universal and simple correlation between the shear modulus and the
specific length scale λ (wave length) [20]. These relationships are a
very interesting and meaningful conclusion, which can be used to
predict the shear modulus of BMGs at a certain temperature. Based on
the Varshni equation which has two fitting parameters, Zhang et al.
developed an effective method to simulate the temperature dependence
of the shear modulus of BMGs by supposing that one fitting parameter is
equal to the Debye temperature [21]. Lu et al. modified Zhang's model,
and a good agreement between the calculated results and experimental
data was reached for the temperature dependence of the shear modulus
[22]. Temperature dependences of elastic moduli for representative
BMGs are in situ studied down to liquid nitrogen temperature by Yu
et al. [23]. It can be concluded that the elastic moduli of BMGs have
been extensively studied. However, a physical description of the cor-
relation between elastic moduli and temperature has not been estab-
lished quantitatively without any fitting parameter. Therefore, it is
necessary to reveal the law of elastic moduli's temperature dependence.

2. Model

Since no defects such as dislocations or grain boundaries exist, the
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elastic moduli of BMGs have long been considered to be closely related
to the physical parameters determined by atomic cohesive energy, such
as their component elements, glass transition temperatures (Tg) and
thermal expansion coefficients. On the basis of atomistic simulations
and sheared bubble raft experiments, a shear transformation zone (STZ)
model was introduced to explain the plastic deformation of metallic
glasses [24,25]. According to this model, shear deformation takes place
by spontaneous and cooperative reorganization of a small cluster of
randomly close-packed atoms (localized shearing) [26]. The shear de-
formation of STZ under low temperature can be visualized as sliding
between two thin disks of layer atoms around a free volume site which
is achieved by the atom jumping [27]. And local shear deformations are
due to the sharp increase of the atom mobility and softening along a
shear plane motivated by the input of mechanical energy [28,29]. Ac-
cording to literature, the fracture will occur when the energy over the
shear plane arisen from the elastic strain energy applied during the
loading process, and that the total energy determines when the glassy
specimen starts the localized shearing [30,31]. In Bron's theory, the
temperature dependence of the elastic constants arises from the varia-
tion of the lattice potential energy [32].

As discussed above, it can be concluded that both thermal energy
and mechanical energy contribute to overcoming the bonding force
between atoms. So an assumption is proposed that there is a maximum
critical energy density which is corresponding to the onset of the plastic
yielding of shear bands. This critical energy density consists of two
parts: the heat added to the system and the input of mechanical energy.
Although the strain energy upon loading can transfer to heat during
shear deformation. The strain energy is used to determine the starting
of localized shearing in this work. Thus, the heat transferred from strain
energy because of shear deformation or plastic deformation can be ig-
nored. It is well known that the thermal activated atomic jumps do not
cause shear strain, but the atoms move toward the shear direction
under applied shear stress [33]. Thus, the heat added to the system and
the input of mechanical energy are not completely equivalent. Based on
the points discussed above, the critical energy density can be expressed
as follows

= +E W κQ V( )/ ,scri (1)

where Ecri is the critical energy density, W is the work done to the
system, Q is the increase of internal energy due to temperature in-
creasing from 0 K, and κ is an effective coefficient characterizing to
what degree the internal energy contribute to shearing, Vs is the volume
which undergoes local shearing which is the product of area and
thickness for shear band. The formation of shear bands is dominated by
shear deformation, so this process can be considered to be isasteric.
According to recent experimental studies and numerical simulations,
the yielding of BMGs corresponds to the unstable propagation of a large
number of local shearing events with a critical shear strain [26,34].
Hence, the input of mechanical energy can be written as

=W V γ G T( ),s 0
2 (2)

where γ0 is the critical shear strain leading to the unstability of local
shearing events, G(T) is the shear modulus at temperature T. Zink et al.
have found that the critical strain of metallic glasses during shear de-
formation are almost the same at various temperatures (T < Tg) [35].
So in the following section, the critical shear strain γ0 is considered to be
independent of temperature. The increase of internal energy can be
expressed as

∫=Q ρV C T dT( ) ,
T

s 0 p (3)

where ρ is the density of BMGs, Cp(T) is the specific heat capacity at
constant pressure. For metallic glasses materials between 0 K and Tg,
the linear thermal expansion coefficient α is negligible (10−5). Thus, Vs

and ρ are considered not to change with temperature. Substituting
T = 0 K into Eq. (1), we obtain

=E γ G (0),cri 0
2 (4)

By plugging T = Tg into Eq. (1), we have

∫= +E γ G T κρ C T dT( ) ( ) .
T
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2
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g

(5)

Incorporating Eqs. (4) and (5), we get
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Incorporating Eqs. (1)–(4) and (6), we can obtain
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Varshni proposed that shear modulus G is reduced to a fixed value at
the melting point, i.e., G(Tm) = fmG(0), where fm should be the same
for substances with similar structure and binding [12]. Because there
are many places in common between the melting point and the glass
transition temperature, the glass transition can be assumed to occur
when the shear modulus G is reduced to a fixed value, i.e.,
G(Tg) = fgG(0) [36]. Lu et al. compared the shear moduli of 47 BMGs at
0 K with those at glass transition temperatures [G(Tg)], obtained that
the ratios [fg] of G(Tg)/G(0) are almost the same and have a value
around 0.85 [22]. Then, Eq. (7) can be simplified as
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The specific heat capacity at constant pressure Cp(T) is defined as:

= +C T C T α VBT M( ) [ ( ) 2 ]/ ,p v
2 (9)

where Cv(T) is the heat capacity at a constant volume, V is the molar
volume, B is the bulk modulus, M is the molar mass and α is the linear
thermal expansion coefficient. And Cv(T) can be obtained by the Debye
model as follow:
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where N is the Avogadro number, kB is the Boltzmann constant, and θD
is the Debye temperature. To ignore the high order small quantity α2,
we have
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By plugging Eq. (11) into Eq. (8), we get
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So the variation in shear modulus with temperature for BMGs can be
predicted by Eq. (12). And the inherent relationship between the shear
modulus, the Young's modulus, the glass transition temperature and the
Debye temperature is revealed. The shear modulus at 0 K [G(0)] can be
obtained by substituting an arbitrary reference temperature in Eq. (12)
which can be expressed by the specific length scale λ based on Wu's
work [20]. The Debye temperature of BMGs [θD] can be obtained from
the room temperature elastic moduli [37],
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