Intermetallics 80 (2017) 10-15

Contents lists available at ScienceDirect

Intermetallics

journal homepage: www.elsevier.com/locate/intermet

Competition of XA and L2₁B ordering in Heusler alloys Mn_2CoZ (Z = Al, Ga, Si, Ge and Sb) and its influence on electronic structure

Yuepeng Xin ^a, Hongyue Hao ^a, Yuexing Ma ^a, Hongzhi Luo ^{a, b, *}, Fanbin Meng ^a, Heyan Liu ^a, Enke Liu ^b, Guangheng Wu ^b

^a School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China

^b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China

A R T I C L E I N F O

Article history: Received 22 June 2016 Received in revised form 13 August 2016 Accepted 6 October 2016

Keywords: Magnetic alloys Electronic structure Phase stability Ab-initio calculations

ABSTRACT

Competition between the highly-ordered XA structure and disordered L2₁B structure in Heusler alloys Mn_2CoZ (Z = Al, Ga, Si, Ge, Sb) has been investigated. The relative stability of the two structures strongly depends on the main group element Z. When Z belongs to Al or Ga, the XA structure is stabler, but when Z belongs to Si, Ge or Sb, the L2₁B structure gains stability and is lower in energy. This is related to the different number of valence electrons in main group element Z, which influences the DOS structure near the Fermi level and changes N(E_F). The energy difference ΔE between the XA and L2₁B structures may be used to estimate the tendency to form L2₁B structure in different Heusler alloys qualitatively. A large negative ΔE is preferable to retard the A-C site disorder and retain the highly-ordered XA structure. That is just the case in Mn₂CoAl. A robust half-metallicity is observed in Mn₂CoAl and Mn₂CoGa, their spin gapless semiconducting character will be destroyed and replaced by a half-metallic state if L2₁B disorder occurs. Finally, these results suggest that the L2₁B structure should be considered together with XA structure when discussing the electronic structure of "inverse" Heusler alloys.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the Mn₂-based Heusler alloys have attracted much attention for their interesting properties and possible applications in many technical fields. One important application of Mn₂-based Heusler alloys is spintronic materials, till now quite a few Mn₂-based Heusler alloys have been reported to be half-metals or spin gapless semiconductors (SGSs). Some typical examples are Mn₂VAl, Mn₂VSi, Mn₂FeZ (Z = Al, Sb), Mn₂CoZ (Z = Al, Ga, Si, Sb), Mn₂CuSb, Mn₂ZrSi, etc. [1–12]. The half-metallic materials have a 100% spin polarization of the conduction electrons at the Fermi level E_F and are of great importance in spintronics. SGS is an intermediate state between the well known half-metallic ferromagnets and gapless semiconductors. In case of SGS, one spin channel has an open band gap at E_F like a half-metal but the other spin channel has a zero-width gap like a gapless semiconductor [5,13], thus the conducting electrons or holes are not only 100% spin

http://dx.doi.org/10.1016/j.intermet.2016.10.001 0966-9795/© 2016 Elsevier Ltd. All rights reserved. polarized but also easily excited. Among these Mn_2 -based Heusler alloys, Mn_2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) are particularly interesting, for they are not only predicted to be half-metals/SGSs theoretically, but also can be realized experimentally [4,5,14]. It has been found that the unique properties of Mn_2CoZ alloys are strongly related to the preferred occupation of Mn and Co atoms in the cubic lattice of Heusler alloys [15].

Heusler alloys crystallize in a highly-ordered cubic structure and have a stoichiometric composition of X_2YZ , where X and Y are transition metal elements, and Z is a main group element. In Heusler alloys there are four Wyckoff-positions namely A (0, 0, 0), B (0.25, 0.25, 0.25), C (0.5, 0.5, 0.5) and D (0.75, 0.75, 0.75), respectively. The transition metal elements X, Y enter A, B, C sites and main group element Z always enters D sites in the cubic lattice. The site preference of transition metal elements is usually determined by the number of their valence electrons: atoms with more electrons tend to occupy the A and C positions while the atoms with fewer electrons prefer the B position [16]. So in Mn₂CoZ the most possible structure is that one Mn and one Co occupy (A, C) sites and the other Mn enters the B site. In previous literature, people usually assume that Mn and Co occupy the A and C sites respectively [4,17],

^{*} Corresponding author. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China. *E-mail address:* luo_hongzhi@163.com (H. Luo).

which results in a highly-ordered XA structure (Hg_2CuTi -type, space group No.216), as shown in Fig. 1.

However, a new possible structure named L2₁B may also be considered when discussing the electronic structure and magnetic properties of Heusler alloys Mn₂CoZ. The L2₁B structure evolves from the ordered XA structure [18,19]. In L2₁B type Mn₂CoZ, one Mn and one Co occupy the A and C sites randomly rather than respectively, which results in space group Fm-3m, the same to the $L2_1$ structure. In Fig. 1, we compared the crystal structures of $L2_1B$ and XA type Mn₂CoAl as an example. In some Fe-based Heusler alloys, the L2₁B structure is found to has a lower total energy compared with XA structure and is stabler [20]. In some Mn₂-based Heusler alloys, the L2₁B structure may increase the total energy slightly, but due to the effect of enthalpy of mixing, it can still be observed in actual samples at room temperature [19]. It has also been found that the L2₁B structure can affect the electronic and magnetic properties of Heusler alloys obviously [21]. Thus it is quite meaningful to investigate the electronic structure and stability of half-metallicity in Heusler alloys under possible L2₁B structure.

In this paper, we investigated the competition between L2₁B and XA ordering in Heusler alloys Mn_2CoZ (Z = Al, Ga, Si, Ge, Sb). A close relation between the phase stability of L2₁B structure and main group element Z has been observed. L2₁B structure is more preferable in several Mn_2CoZ alloys. But the half-metallicity in them is robust under either XA or L2₁B structure.

2. Calculation methods

The electronic structures of $Mn_2CoZ(Z = Al, Ga, Si, Ge, Sb)$ were calculated by using CASTEP code based on pseudopotential method with a plane-wave basis set [22,23]. The interactions between the atomic core and the valence electrons were described by the ultrasoft pseudopotential [24]. The electronic exchange–correlation energy was treated under the generalized-gradient-approximation (GGA) [25]. Supercell approach is used for the calculations of L2₁B structure. The random occupation of Mn and Co at (A, C) sites is treated in a 16-atom supercell, which resulting in a chemical formula of Mn₈Co₄Z₄. The detail can be found in Fig. 1. For all cases, a plane-wave basis set cut-off of 500 eV was used. A mesh of $20 \times 20 \times 20$ or $16 \times 16 \times 16$ *k*-points was employed for Brillouin zone integrations in the XA and L2₁B structures, respectively. These parameters ensured good convergences for total energy. The convergence tolerance for the calculations was selected as a difference on total energy within 1×10^{-6} eV/atom.

3. Results and discussions

3.1. Competition between L2₁B and XA ordering in Mn₂CoZ

First, We investigated the site preference of Mn and Co in Mn_2CoZ (Z = Al, Ga, Si, Ge, Sb) and compared the phase stability of XA and L2₁B structures. During structural optimization, we

Fig. 1. Crystal structures of XA and L2₁B type Mn₂CoAl, in the L2₁B structure, Mn and Co occupy A, C sites randomly, the L2₁B supercell indicates the exact structure used for calculation, in which Mn and Co atoms occupy four A and four C sites alternately.

Download English Version:

https://daneshyari.com/en/article/5457725

Download Persian Version:

https://daneshyari.com/article/5457725

Daneshyari.com