Accepted Manuscript

Effect of substrate temperature on the microstructure and properties of Be_2C films: Aim to advance its applications as ICF ablator

Yudan He, Jiqiang Zhang, Bingchi Luo, Kai Li, Long Chen, Wenqi Li, Jiangshan Luo, Weidong Wu

PII: S0925-8388(17)32914-6

DOI: 10.1016/j.jallcom.2017.08.185

Reference: JALCOM 42942

To appear in: Journal of Alloys and Compounds

Received Date: 20 June 2017
Revised Date: 10 August 2017
Accepted Date: 19 August 2017

Please cite this article as: Y. He, J. Zhang, B. Luo, K. Li, L. Chen, W. Li, J. Luo, W. Wu, Effect of substrate temperature on the microstructure and properties of Be₂C films: Aim to advance its applications as ICF ablator, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.08.185.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of substrate temperature on the microstructure and properties of Be₂C films: aim to advance its applications as ICF ablator

Yudan He¹, Jiqiang Zhang¹, Bingchi Luo¹, Kai Li¹, Long Chen¹, Wenqi Li¹, Jiangshan Luo^{1,2}*, Weidong Wu^{1,2,3}*

- 1. Research center of laser fusion, chinese academy of engineering physics, Mianyang 621900, China
- 2. Science and technology on plasma physics laboratory, Mianyang 621900, China.
- 3. IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China;

Corresponding author: Jiangshan Luo (1975-), <u>jiangshanluo@caep.cn</u>.

Weidong Wu (1967-), wuweidongding@163.com

Abstract:

Beryllium carbide films were deposited on quartz substrates by DC reactive magnetron sputtering of beryllium in the mixture of CH_4 -Ar plasma. The influence of substrate temperature on the composition, microstructure and optical properties were characterized by suitable analytical techniques. Experimental results revealed that the composition is independent of substrate temperature and all films are mainly composed of Be_2C . Untextured polycrystalline Be_2C coatings with smooth surface (Ra < 4 nm) were obtained at low substrate temperature (Ra < 4 nm) were obtained at low substrate temperature (Ra < 4 nm) were obtained at low substrate temperature increasing. These films exhibited fine grains (Ra < 4 nm) and high densities. High speed deposition (Ra < 4 nm/h) of Ra < 4 nm/h o

Key word: Beryllium carbide film, ICF ablator, Reactive sputtering, Substrate temperature.

1. Introduction

One key issue for the realization of controlled fusion reaction by inertial confinement fusion (ICF) is the selection of suitable capsule ablator. Ablative materials have to fulfill many requirements [1-3], such as a low atomic number (Z), uniform composition and microstructure, smooth surface, high density, and so on. In the current stage of ICF, hydrocarbon (CH), beryllium (Be) and high density carbon (HDC) are the prior alternative materials for capsule ablator in National Ignition Facility (NIF) [1-9]. The advantage of hydrocarbon is its transparency of visible-infrared light and the maturity of its preparation process [1, 10-11]. Beryllium has a higher ablation speed [4, 10-14]. HDC owns higher density (3.5 g/cm³), which resulted in higher X-ray absorption efficiency [2,4]. Ignition experiments with CH, Be and HDC capsules have been performed on NIF [2,15-18]. Some great progresses have been achieved. However, the successful ignition is still unreachable. In this case, it is particularly important to unfold researches on potential ablative materials.

Beryllium carbide (Be₂C) has aroused researchers' interest for its potential usages in ICF as ablative materials [3,19-20]. It combines the advantages of CH, Be, HDC, and reaches a more balanced performance. Be₂C possesses a lower atomic number (compare to HDC), higher density (compare to CH and Be). Its anti-fluorite structure results in a smoother surface and benefits to grain refinement [3]. In addition, as a yellow-brown transparent crystal, the

Download English Version:

https://daneshyari.com/en/article/5458116

Download Persian Version:

https://daneshyari.com/article/5458116

<u>Daneshyari.com</u>