Accepted Manuscript

Highly efficient and recyclable graphene oxide-magnetite composites for isatin mineralization

Zhengyuan Zhou, Minhua Su, Kaimin Shih

PII: S0925-8388(17)32452-0

DOI: 10.1016/j.jallcom.2017.07.087

Reference: JALCOM 42503

To appear in: Journal of Alloys and Compounds

Received Date: 29 April 2017

Revised Date: 14 June 2017

Accepted Date: 8 July 2017

Please cite this article as: Z. Zhou, M. Su, K. Shih, Highly efficient and recyclable graphene oxidemagnetite composites for isatin mineralization, *Journal of Alloys and Compounds* (2017), doi: 10.1016/ j.jallcom.2017.07.087.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Highly Efficient and Recyclable Graphene Oxide-Magnetite Composites for
2	Isatin Mineralization
3	Zhengyuan Zhou ^a , Minhua Su ^{a, b, c*} , Kaimin Shih ^{a*}
4	^a Department of Civil Engineering, The University of Hong Kong, Pokfulam Road,
5	Pokfulam, Hong Kong SAR, P.R. China
6	^b School of Environmental Science and Engineering, Guangzhou University,
7	Guangzhou, 510275, P.R. China
8	^c Guangdong Provincial Key Laboratory of Radioactive Contamination Control and
9	Resources, Guangzhou University, Guangzhou, 510275, P.R. China
10	
11	ABSTRACT: A series of graphene oxide-magnetite (GO-Fe ₃ O ₄) composites with
12	various GO/Fe ₃ O ₄ weight ratios (i.e., GO/Fe ₃ O ₄ = $1/20$, $2/20$, $3/20$ and $4/20$) was
13	successfully synthesized via chemical precipitation of Fe ₃ O ₄ nanoparticles on GO
14	sheets. The chemical and physical properties of as-synthesized GO-Fe ₃ O ₄ composites
15	were characterized by XRD, TEM and FT-IR. Results from XRD and TEM revealed
16	that cubic-phase Fe ₃ O ₄ was in situ deposited on the surface of GO resulting in
17	GO-Fe $_3O_4$ composites. The C-O-Fe bridging coordination mode was determined by
18	FT-IR, demonstrating the Fe ₃ O ₄ nanoparticles were well coupled with GO sheets by
19	coordination bond. TEM images revealed that two types of geometrical structures of
20	GO-Fe ₃ O ₄ composites were formed by loading different amounts of GO. With low
21	GO loadings (i.e., GO/Fe ₃ O ₄ = $1/20$, $2/20$ and $3/20$), a single layer structure
22	GO-Fe ₃ O ₄ composite was obtained. At a high GO loading (i.e., GO/Fe ₃ O ₄ = $4/20$),
23	stacking structure of GO-Fe $_3O_4$ composite was formed. The as-prepared GO-Fe $_3O_4$
24	nanocomposites exhibited an excellent catalytic performance in the degradation of
25	isatin in the presence of H_2O_2 . With GO/Fe ₃ O ₄ weight ratio of 3/20, GO-Fe ₃ O ₄
26	composites showed superior degradation efficiency of isatin, mainly due to the
27	effective functional combination between GO and Fe ₃ O ₄ .

28 Keywords: Graphene oxide; Magnetite; Catalytic; Isatin; Mineralization

Download English Version:

https://daneshyari.com/en/article/5458349

Download Persian Version:

https://daneshyari.com/article/5458349

Daneshyari.com