Accepted Manuscript

Structural, vibrational and dielectric behavior of $Co_{1-x}M_xCr_2O_4$ (M = Zn, Mg, Cu and x = 0.0, 0.5) spinel chromites

Pankaj Choudhary, Dinesh Varshney

PII: S0925-8388(17)32538-0

DOI: 10.1016/j.jallcom.2017.07.162

Reference: JALCOM 42578

To appear in: Journal of Alloys and Compounds

Received Date: 4 March 2017
Revised Date: 15 July 2017
Accepted Date: 17 July 2017

Please cite this article as: P. Choudhary, D. Varshney, Structural, vibrational and dielectric behavior of $Co_{1-x}M_xCr_2O_4$ (M = Zn, Mg, Cu and x = 0.0, 0.5) spinel chromites, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.07.162.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural, vibrational and dielectric behavior of $Co_{1-x}M_xCr_2O_4$ (M = Zn, Mg, Cu and x = 0.0, 0.5) spinel chromites

Pankaj Choudhary, and Dinesh Varshney[#]

Materials Science Laboratory, School of Physics, Vigyan Bhawan, Devi Ahilya University,

Khandwa Road Campus, Indore 452001, India.

Abstract:

Low temperature sol-gel auto combustion method is used to synthesize the spinel chromites of $Co_{1-x}M_xCr_2O_4$ (M = Zn, Mg {non–Jahn Teller (JT) ion}, Cu {JT ion}; x = 0.0, 0.5). Synchrotron, and lab x-ray diffraction pattern confirms the single-phase crystalline nature. Structural features from cubic (space group Fd3m) [CoCr₂O₄, Co_{0.5}Mg_{0.5}Cr₂O₄ and Co_{0.5}Zn_{0.5}Cr₂O₄] to tetragonal (space group $I4_1/amd$) [Co_{0.5}Cu_{0.5}Cr₂O₄] are reported. SEM micrograph of sintered samples results in less porosity with average particle size distribution of $\sim 0.2 - 0.3 \, \mu m$. Shifting of Raman active phonon modes is seen with doping and an additional Raman active mode is seen at $666.45 \, \text{cm}^{-1}$ for $Co_{0.5}Zn_{0.5}Cr_2O_4$. Dielectric behavior as a function of frequency reveals that dispersion in all these chromites is attributed to hopping mechanism. Higher value of dielectric constant (ε ') and minimum loss tangent (tan δ) for non-JT ion $Co_{0.5}Zn_{0.5}Cr_2O_4$ is measured inferring effective charge polarization in chromites as compare to doped JT ions. Both grains and grain boundaries are active in $Co_{0.5}Zn_{0.5}Cr_2O_4$ at lower frequencies as depicted from impedance analysis. Doping does not showed the presence of electric polarization in chromites.

Keywords: Spinel chromites, Synchrotron x-ray diffraction, Raman scattering, Dielectric properties.

***Corresponding author:** Tel.: +91-731-2467028; Tele fax: +91-731-2467028

E-mail: vdinesh33@rediffmail.com

Download English Version:

https://daneshyari.com/en/article/5458363

Download Persian Version:

https://daneshyari.com/article/5458363

Daneshyari.com