Accepted Manuscript

A facile synthetic protocol to construct 1D Zn-Mn-Oxide nanostructures with tunable compositions for high-performance lithium storage

Yuan Tian, Zhangxian Chen, Weijian Tang, Zeheng Yang, Weixin Zhang, Sheng Li, Kai Wang, Yonghui Sun, Qing Xia, Bing Guo

PII: S0925-8388(17)31835-2

DOI: 10.1016/j.jallcom.2017.05.218

Reference: JALCOM 41949

To appear in: Journal of Alloys and Compounds

Received Date: 31 March 2017 Revised Date: 16 May 2017 Accepted Date: 20 May 2017

Please cite this article as: Y. Tian, Z. Chen, W. Tang, Z. Yang, W. Zhang, S. Li, K. Wang, Y. Sun, Q. Xia, B. Guo, A facile synthetic protocol to construct 1D Zn-Mn-Oxide nanostructures with tunable compositions for high-performance lithium storage, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.05.218.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Facile Synthetic Protocol to Construct 1D Zn-Mn-Oxide Nanostructures with Tunable Compositions for High-performance Lithium Storage

Yuan Tian^{1,2}, Zhangxian Chen^{1,2,*}, Weijian Tang^{1,2}, Zeheng Yang^{1,2,*}, Weixin Zhang^{1,2,*}, Sheng Li^{1,2}, Kai Wang^{1,2}, Yonghui Sun^{1,2}, Qing Xia^{1,2}, Bing Guo^{1,2}

- 1 School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China 230009
- 2 Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei, China 230009

ABSTRACT

The synthesis of one-dimensional (1D) Zn-Mn-Oxide (ZMO) for lithium storage is an important research topic, since ZMO can potentially satisfy the ever-increasing demand on the high energy density, natural abundance and long lifespan of lithium ion batteries. Generally, the synthesis of 1D ZMO nanostructures relies on various templates. A facile construction of 1D ZMO nanostructures with tunable compositions via the same synthetic protocol remains a great challenge. Herein, two different Zn-Mn-Oxides of ZnMn₂O₄ and ZnMnO₃ both with 1D rod morphology were successfully prepared via a simple co-precipitation reaction coupled with subsequent heat treatment. As the anode materials for lithium ion battery, both ZMO nanorods exhibit good lithium storage performances. Especially, ZnMn₂O₄ nanorods display superior electrochemical performances to ZnMnO₃ nanorods, including higher discharge capacities of 1119.3 and 572.6 mAh g⁻¹ at 0.1 C and 0.5 C, respectively and better cyclability with capacity retention of 80% after 300 cycles at 0.5 C. The improved electrochemical properties should be attributed to the porous and interparticle-bridging microstructures in ZnMn₂O₄ nanorods, which can offer better contact between electrolyte and anode and tolerate larger volume changes during discharge/charge process.

KEYWORDS: Anode materials; ZnMn₂O₄; ZnMnO₃; One-dimensional; Li-ion batteries

Download English Version:

https://daneshyari.com/en/article/5458464

Download Persian Version:

https://daneshyari.com/article/5458464

<u>Daneshyari.com</u>