Journal of Alloys and Compounds 720 (2017) 483-487

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Phase diagram study of BaO-Bi₂O₃-V₂O₅ system

Meera Keskar^{*}, K. Krishnan, S.K. Sali, S. Kannan

Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 40008, India

ARTICLE INFO

Article history: Received 13 February 2017 Received in revised form 22 May 2017 Accepted 26 May 2017 Available online 29 May 2017

Keywords: Solid state reaction X ray diffraction Thermal expansion Heat capacity

ABSTRACT

The sub–solidus phase relations in Ba–Bi–V–O quaternary system were determined at 1123 K in air. To confirm the formation and stability of reported phases at this temperature, ternary and quaternary compounds in BaO–Bi₂O₃, Bi₂O₃–V₂O₅, BaO–V₂O₅ and BaO–Bi₂O₃–V₂O₅ systems were synthesized by solid state route. BaCO₃, Bi₂O₃ and NH₄VO₃ were reacted in desired molar proportions at 1123 K. A pseudo–ternary phase diagram of BaO–Bi₂O₃–V₂O₅ system was drawn on the basis of phase analysis of various phase mixtures and reported phases and phase fields were established by powder X–ray Diffraction (XRD). In the phase diagram, a single quaternary compound Ba₂BiV₃O₁₁ was identified. Thermal Expansion (TE) behavior and heat capacity (C_p) measurement of Ba₂BiV₃O₁₁ were carried out using High–Temperature X–Ray Diffraction (HTXRD) technique and Differential Scanning Calorimeter (DSC), respectively.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Bismuth vanadates doped with aliovalent cations have attracted much attention in recent years as they have vast industrial applications in various fields. They have been mainly developed for potential visible light active photocatalysts, promising candidates as electrolyte for solid oxide fuel cells (SOFC), ferroelectric materials suitable for fabrication of various electronic devices, good conductors, used in fabrication of multilayered microwave devices, pigments in paint industry, etc. [1-6]. γ -Bi₄V₂O_{11-x}, a highly distorted high temperature phase of Bi₄V₂O_{11-x}, having an inherent oxygen deficiency with higher ionic conductivity can be stabilized at room temperature with the doping of divalent, trivalent or tetravalent metal cations at vanadium site [7,8]. Owing to such a wide scope of applications, a lot of interests have been shown in compounds containing both Bi³⁺ and alkaline–earth metal cations in bismuth vanadates. and several papers have been published in recent years in this direction [3.9–13].

Barium bismuth vanadate is one such important functional material having divalent alkaline earth metal and Bi^{3+} cations. In Ba-Bi-V-O system three quaternary compounds such as $Ba_2BiV_3O_{11}$, Ba_2BiVO_6 and $BaBi_8V_2O_{18}$ are reported in literature, which are having bismuth in +3 and vanadium in +5 oxidations states. A synthesis and crystal structural study of $Ba_2BiV_3O_{11}$ was first carried out by Huang et al. [14]. Synthesis of the same at lower

* Corresponding author. E-mail address: mskeskar@barc.gov.in (M. Keskar). temperature has been reported by Su et al. [15]. Recently, microstructural and microwave dielectric properties of Ba₂BiV₃O₁₁ have been investigated by Li et al. [1]. Studies on structural, microstructural and electrical properties of Ba(Bi_{0.5}V_{0.5})O₃ or Ba₂BiVO₆, a promising ferroelectric material, have been carried out by Sutar et al. [2]. Synthesis of another quaternary phase BaBi₈V₂O₁₈, a key material in modern communication technology having an important application in mobile phones, TV satellite dish, military radar etc. has been patented by Fang et al. [16]. Barium bismuth vanadates are also used to develop low-firing microwave dielectrics. Thermal analysis and structural characterization of Bi₄V_{2-x}- $Ba_xO_{11-1.5x}$ (0.02 $\le x \le 0.50$) solid solutions, where V⁵⁺ is partially substituted by Ba^{2+} in $Bi_4V_2O_{11}$ has been studied by Malta and Medeiros [17]. From powder XRD study they have reported that a new phase $Bi_4Ba_{0.5}V_{1.5}O_8$ (BaBi_8V_3O_{16}) began to form above x = 0.14. However, no detail studies of the compound have been carried out by them. Recently, structural, thermal and conducting properties of barium doped $Bi_4V_2O_{11}$, and $Bi_4Ba_xV_{2-x}O_{11-\delta}$, (0.0 < x < 0.20) have been investigated by Gupta et al. [18]. The phase diagram study of BaO-Bi₂O₃, BaO-V₂O₅ and Bi₂O₃₋

 $-V_2O_5$ ternary systems have been carried out in detail. However, no phase diagram is available for BaO–Bi₂O₃–V₂O₅ pseudo ternary system. This stimulates us to establish the phase diagram of BaO–Bi₂O₃–V₂O₅ using powder X–ray diffraction as prime characterization technique. Here, attempts were made to synthesize the quaternary barium bismuth vanadate compounds by solid state route. Since limited data is available regarding their thermo–physical properties, the thermal expansion behavior and heat

capacity measurements of quaternary compounds were also carried out using HTXRD and DSC techniques, respectively and reported in this paper.

2. Experimental

2.1. Synthesis

All the ternary and quaternary phases reported in BaO–Bi₂O₃, Bi₂O₃–V₂O₅, BaO–V₂O₅ and BaO–Bi₂O₃–V₂O₅ systems were synthesized by solid state route. Ammonium hydrogen vanadate (NH₄VO₃), BaCO₃ '(both analar grade, Merck, 99.99% purity)' and Bi₂O₃ '(analar grade, Aldrich 99.9% purity)' were used as starting materials. BaO, Bi₂O₃ and V₂O₅ mixed in different molar proportions for making equilibrium phase mixtures are listed in Table 1.

All the mixtures were well ground in agate mortar and pestle using acetone as a binder. These mixtures were heated in a resistance heating furnace in an alumina boat initially at 673 K for 6 h and cooled to room temperature. The mixtures were reground and reheated in air at 1073 and 1123 K for 48 h. It is reported that decomposition of NH₄VO₃ starts at 473 K and completes at 723 K and reactions of BaCO₃ and other reactants starts at 890 K and completes at 1050 K. The well established ternary oxides in BaO–Bi₂O₃, Bi₂O₃–V₂O₅, BaO–V₂O₅ systems were synthesized by mixing respective reactants in desired molar proportions and heated at 1123 K for 48 h. All the heated products were air quenched to stabilize 1123 K heated product phases at room temperature.

2.2. Characterization

Mix No Mole fraction of the oxides

XRD was used as prime tool for identification of various phase

Table 1

Phases identified in the products of various reaction mixtures heated at 1123 K in the $BaO-Bi_2O_3-V_2O_5$ system.

Phases identified by XRD

IVIIX. NO.	Mole fraction of the oxides			Phases identified by XRD		
	BaO	Bi ₂ O ₃	V ₂ O ₅			
B1	0.66	0.17	0.17	Ba ₃ V ₂ O ₈	Ba ₂ Bi ₆ O ₁₁	Ba9Bi2O12
B 2	0.5	0.12	0.38	Ba ₂ BiV ₃ O ₁₁	_	_
В З	0.18	0.09	0.73	BaV ₂ O ₆	BiVO ₄	V ₂ O ₅
B 4	0.6	0.1	0.3	Ba2BiV3O11	$Ba_3V_2O_8$	$Bi_8V_2O_{17}$
B 5	0.5	0.17	0.33	Ba2BiV3O11	$Ba_3V_2O_8$	$Bi_8V_2O_{17}$
B 6	0.17	0.5	0.33	Ba2BiV3O11	$Bi_8V_2O_{17}$	$Bi_4V_2O_{11}$
B 7	0.5	0.25	0.25	Ba2BiV3O11	$Ba_3V_2O_8$	$Bi_8V_2O_{17}$
B 8	0.67	0.08	0.25	Ba2BiV3O11	$Ba_3V_2O_8$	$Bi_8V_2O_{17}$
B 9	0.33	0.33	0.34	Ba2BiV3O11	$Bi_8V_2O_{17}$	$Bi_4V_2O_{11}$
B 10	0.125	0.625	0.25	Ba2BiV3O11	$Bi_4V_2O_{11}$	$Bi_8V_2O_{17}$
B 11	0.57	0.07	0.36	Ba2BiV3O11	$Ba_3V_2O_8$	$Ba_3V_4O_{13}$
B 12	0.6	0.2	0.2	$Ba_3V_2O_8$	Bi ₁₁ VO ₁₉	Ba2Bi6O11
B 13	0.275	0.45	0.275	$Ba_2BiV_3O_{11}$	$Ba_3V_2O_8$	$Bi_8V_2O_{17}$
B 14	0.1	0.5	0.4	Ba2BiV3O11	$Bi_4V_2O_{11}$	BiVO ₄
B 15	0.8	0.1	0.1	$Ba_3V_2O_8$	Ba ₂ Bi ₆ O ₁₁	Ba9Bi2O12
B 16	0.1	0.8	0.1	Bi ₁₁ VO ₁₉	$Ba_3V_2O_8$	-
B 17	0.4	0.57	0.03	Ba ₂ Bi ₆ O ₁₁	$Ba_3V_2O_8$	Bi ₁₁ VO ₁₉
B 18	0.5	0.05	0.45	Ba2BiV3O11	BaV ₂ O ₆	BiVO ₄
B 19	0.55	0.4	0.05	Ba ₂ Bi ₆ O ₁₁	$Ba_9Bi_2O_{12}$	$Ba_3V_2O_8$
B 20	0.05	0.8	0.15	Bi12V2O23	$Bi_8V_2O_{17}$	$Ba_3V_2O_8$
B 21	0.55	0.03	0.42	Ba ₂ BiV ₃ O ₁₁	$Ba_3V_4O_{13}$	BaV ₂ O ₆
B 22	0.9	0.04	0.06	Ba ₉ Bi ₂ O ₁₂	$Ba_3V_2O_8$	BaO
B 23	0.3	0.6	0.1	Ba ₂ Bi ₆ O ₁₁	$Ba_3V_2O_8$	Bi ₁₁ VO ₁₉
B 24	0.06	0.9	0.04	Bi ₁₁ VO ₁₉	Ba ₂ Bi ₆ O ₁₁	-
B 25	0.167	0.667	0.166	Bi12V2O23	$Ba_3V_2O_8$	-
B26	0.33	0.5	0.17	Bi ₁₁ VO ₁₉	$Bi_{12}V_2O_{23}$	$Ba_3V_2O_8$
B27	0.25	0.28	0.47	Ba2BiV3O11	BaV ₂ O ₆	BiVO ₄
B28	0.6	0.03	0.37	Ba2BiV3O11	$Ba_3V_2O_8$	$Ba_3V_4O_{13}$

Bold denotes a single pure quaternary phase could established during present work.

mixtures synthesized at 1123 K. XRD data of the products was collected on 'Rigaku Miniflex-600 theta—theta diffractometer' with graphite monochromatized Cu K α_1 radiation ($\lambda = 1.5406$ Å) at the scanning rate of 2° (2 θ) per minute. High temperature X-ray diffraction data (HTXRD) data for quaternary compound was collected on a 'STOE theta—theta high temperature X—ray diffractometer' using 'HDK–2.4 Buhler' high temperature attachment in 10^{-5} mbar vacuum from 298 to 1123 K. Instrumental details of HTXRD are discussed elsewhere [19]. Prior to the collection of HTXRD data, the diffractometer was calibrated at room temperature using silicon powder and thermocouple of HTXRD was calibrated using phase transitions in K₂SO₄ [20]. MgO was used as a standard for thermal expansion coefficient measurements and values obtained were within 5% of the reported values [21].

Heat capacity measurements of quaternary compound was carried out using a 'heat flux—type differential scanning calorimeter (model number DSC 1/700 of M/s. Mettler Toledo GmbH, Switzerland)' in high purity argon atmosphere (supplied by INOX Air Product Ltd., India) from 303 to 768 K. The oxygen impurity in argon gas was detected by solid state oxygen sensors and was found to be less than 20 ppm. Temperature calibration of DSC was performed by determining the melting point of In, Zn and Pb. For measurement of heat capacity, classical three—step method was used for blank, sapphire and sample runs in a continuous heating mode with identical experimental conditions. The details of instrument and procedure adopted for C_p data collection are described as earlier [22]. The average of six specific heat data measurements was taken for quaternary compound.

3. Results and discussion

3.1. Phase diagram study

The pseudo ternary phase diagram of BaO–Bi₂O₃–V₂O₅ system was established at 1123 K. Various ternary compounds synthesized in BaO–Bi₂O₃, Bi₂O₃–V₂O₅ and BaO–V₂O₅ systems and a quaternary compound, Ba₂BiV₃O₁₁, formed in BaO–Bi₂O₃–V₂O₅ system during the present work were used for drawing the phase diagram. The data available in literature for various phases in BaO–Bi₂O₃, Bi₂O₃–V₂O₅ and BaO–Bi₂O₃–V₂O₅ systems are discussed below in detail.

3.2. BaO-Bi₂O₃ system

Barium bismuth oxides, interesting materials because of their ability to exhibit either superconducting property or anionic conductivity are extensively studied. However, phase diagram of BaO-Bi₂O₃ system is not well established. Hovhannisyan has mentioned that the BaO-Bi₂O₃ system is very complex and critical to experimental conditions such as type of atmospheres and pressure [23]. He has stated that in phase diagram study of BaO-Bi₂O₃ system in air or oxygen atmosphere, two low melted eutectic areas (1013–1063 K) have been observed in high bismuth content region, with BaO mole % 5-7 and 25-30. Well established oxides reported in BaO-Bi₂O₃ system are BaBi₃O_{5.5}, BaBiO_{2.5} and Ba₉Bi₂O₁₂ with BaO:Bi₂O₃ ratios of 0.4:0.6, 0.67:0.33 and 0.9:0.1, respectively. Structures of BaBi₃O_{5.5} (Ba₂Bi₂O₁₁) and BaBiO_{2.5} (Ba₂Bi₂O₅) have been derived by Michel et al. [24] and Lightfoot et al. [25], respectively. Formation of BaBi₃O_{5.5} was confirmed by Michel by heating Ba(NO₃)₂ and Bi₂O₃ in 2:3 M ratio at 1003 K in air. Lightfoot et al. have reported the synthesis of BaBiO_{2.5} by slow cooling of BaBiO₃ compound in reduced atmosphere. Ba₉Bi₂O₁₂ has been prepared by reacting Bi₂O₃ and BaO at 1173 K for 5 h [26]. During the present work for the phase diagram study at 1123 K, we could confirm only two barium bismuth oxides in pure form, such

Download English Version:

https://daneshyari.com/en/article/5458480

Download Persian Version:

https://daneshyari.com/article/5458480

Daneshyari.com