Journal of Alloys and Compounds 730 (2018) 360-368

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Influence of the substitution Ce for La on structural and electrochemical characteristics of $La_{0.75-x}Ce_xMg_{0.25}Ni_3Co_{0.5}$ (x=0, 0.05, 0.1, 0.15, 0.2 at. %) hydrogen storage alloys

Wei Lv, Jianguang Yuan, Bao Zhang, Ying Wu^{*}

China Iron & Steel Research Institute Group, Advanced Technology & Materials Co., Ltd, No.76 Xueyuannanlu, Haidian District, Beijing 100081, China

ARTICLE INFO

Article history: Received 15 August 2017 Received in revised form 26 September 2017 Accepted 27 September 2017 Available online 28 September 2017

Keywords: A₂B₇ hydrogen storage alloys Ce substitution Microstructure Electrochemical property

ABSTRACT

Structural and electrochemical performances of La_{0.75-x}Ce_xMg_{0.25}Ni₃Co_{0.5} (x = 0, 0.05, 0.1, 0.15, 0.2 at.%) alloys prepared by an induction melting under helium atmosphere followed by annealing treatment at 1173 K in a vacuum furnace for 8 h are studied. Rietveld refinement results from the XRD data suggest that the alloys are mainly composed of (La, Mg)Ni₃, (La, Mg)₂Ni₇ and LaNi₅ phases. Increasing the content of Ce, the amounts of (La, Mg)Ni₃ phase and (La, Mg)₂Ni₇ phase decrease, while the amount of LaNi₅ phase increases. Electrochemical performance measurement results show that the La_{0.75-x}Ce_xMg_{0.25}Ni₃Co_{0.5} alloys are completely activated within 2 cycles, and the cyclic stability after 100 charge/discharge cycles of the alloys increases from 62.39% to 84.94% with the rising of Ce content, and the discharge capacity of the 100th cycle reaches the maximum value of 259 mAh/g when Ce content is 0.1 at.%. Meanwhile, the high rate discharge ability of the alloy electrodes increases to the maximum value when Ce content is 0.1 at.%, and then decreases. Thus, the La_{0.65}Ce_{0.1}Mg_{0.25}Ni₃Co_{0.5} alloy exhibits optimum comprehensive electrochemical properties.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a clean energy, hydrogen energy has attracted more and more attention [1], among which the growing environmental pollution concerns from vehicle exhaust have brought in an increasing need for green energy automobiles such as hybrid electric vehicle (HEV), etc. In other words, developing high efficient, low-cost, long-life, and durable advanced rechargeable batteries has become one great challenge to achieve the change from petroleum-powered vehicles to green energy automobiles [2,3]. During the last decades, the Ni-MH batteries have been establishing a large market share owing to their high energy density, long cycle life and environmentally friendly characteristics, and its basic cell reaction is stated as follow [4].

$$M + xNi(OH)_2 \stackrel{charge}{\Leftrightarrow}_{discharge} MH_x + xNiOOH$$

Nowadays, La-Mg-Ni-based A₂B₇-type hydrogen storage alloys

have been considered as promising candidates for negative electrode materials of Ni-MH rechargeable batteries [5–8], but the poor cycling stability of this type of alloys hinders its practical application [9,10].

It has been one of the challenges faced by researchers in this area to continuously improve the comprehensive properties of A₂B₇-type hydrogen storage alloys through different methods [11,12], including elemental substitution, rapid quenching, and composite alloying, etc. and the elemental substitution has been thought as one of the effective methods to improve the cycle life of La-Mg-Ni system hydrogen storage alloys [13-17], and many scholars have done a lot of valuable researches during recent years [18–21]. Adzic et al. [22,23] pointed out that the replacement of La by Ce might give the La-Mg-Ni system alloy a satisfactory cycle lifetime due to the significant corrosion decreasing caused by addition of Ce. Cheng et al. [24] revealed that the La_{0.76-} $_{x}Ce_{x}Mg_{0.24}Ni_{3.15}Co_{0.245}Al_{0.105}~(x\ =\ 0-0.4$ at. %) alloy exhibits excellent cyclic stability ($S_{35} = 350/366.67 = 95.45\%$), and the HRD₃₀₀₀ reaches 58.11%. Zhang et al. [25] reported that the S₇₀ and HRD_{1200} of $La_{0.7-x}Ce_{x}Mg_{0.3}Ni_{2.8}Co_{0.5}$ (x = 0–0.5 at. %) alloy could reach 87.3% and 67.5%, respectively. Pan et al. [26] found that the $La_{0.7-x}Ce_{x}Mg_{0.3}Ni_{2.875}Mn_{0.1}Co_{0.525}$ (x = 0–0.5 at%) alloy possesses

CrossMark

^{*} Corresponding author. E-mail address: yingwu2000@hotmail.com (Y. Wu).

Fig. 1. XRD patterns (a) of $La_{0.75-x}Ce_xMg_{0.25}Ni_3Co_{0.5}$ alloys and Rietveld analysis pattern (b) of the $La_{0.65}Ce_{0.1}Mg_{0.25}Ni_3Co_{0.5}$ alloy. Bottom labels for the Rietveld analysis pattern correspond to (La, Mg)₂Ni₇: P6₃/mmc, (La, Mg)Ni₃: R-3m, and LaNi₅: P6/mmm, (top to bottom, respectively).

Table 1 Summary of refinement data of $La_{0.75\text{-}x}Ce_xMg_{0.25}Ni_3Co_{0.5}$ alloys.

Alloys	Phase type	Space group	Phase abundance/(wt.%)	Lattice constant			Unit-cell volume/Å ³
				a/Å	c/Å	c/a	
x = 0	(La, Mg)Ni ₃	R-3m	3.09%	5.096	25.709	5.045	578.131
	(La, Mg) ₂ Ni ₇	P6 ₃ /mmc	91.18%	5.049	24.245	4.802	535.256
	LaNi ₅	P6/mmm	5.73%	5.051	4.010	0.794	88.603
x = 0.05	(La, Mg)Ni ₃	R-3m	2.48%	5.082	25.697	5.056	574.818
	(La, Mg) ₂ Ni ₇	P6 ₃ /mmc	85.85%	5.037	24.220	4.809	532.134
	LaNi ₅	P6/mmm	11.67%	5.039	4.001	0.794	87.999
x = 0.1	(La, Mg)Ni ₃	R-3m	2.09%	5.072	25.670	5.061	571.860
	(La, Mg) ₂ Ni ₇	P6 ₃ /mmc	81.26%	5.028	24.207	4.815	529.900
	LaNi ₅	P6/mmm	16.65%	5.032	3.997	0.794	87.663
x = 0.15	(La, Mg)Ni ₃	R-3m	1.58%	5.067	25.654	5.063	570.307
	(La, Mg) ₂ Ni ₇	P6 ₃ /mmc	73.94%	5.013	24.190	4.826	526.392
	LaNi ₅	P6/mmm	24.48%	5.023	3.990	0.794	87.181
x = 0.2	(La, Mg)Ni ₃	R-3m	1.03%	5.051	25.599	5.068	565.677
	(La, Mg) ₂ Ni ₇	P6 ₃ /mmc	65.52%	5.009	24.179	4.827	525.320
	LaNi ₅	P6/mmm	33.45%	5.014	3.982	0.794	86.714

good electrochemical properties ($S_{80} = 75/94.8 = 79.1\%$, HRD₁₂₅₀ = 56%). Liu et al. [27] revealed that the S_{90} of the La_{0.8-x}Ce_xMg_{0.2}Ni_{2.8}Co_{0.6} (x = 0-0.3 at. %) alloy reaches 77% when x = 0.1. Luo et al. [28] reported that the (LaCeMg)(NiCoAlZn)_{3.5} alloy exhibits good cyclic stability ($S_{100} = 253.37/285 = 88.9\%$), and the HRD₉₀₀ reaches 65.32%. Zou et al. [29] also found that the S_{100} and HRD₉₀₀ of La_{0.6}Ce_{0.2}Mg_{0.2}(NiCoAlMn)_{3.3} alloy nearly reach 90% and 66%, respectively, but the capacity reduces nearly to 250 mAh/g when S_{100} reaches the maximum value. Lin et al. [30] revealed that the S₁₀₀ of the alloy is also excellent (HRD₃₀₀ = 91.90%, HRD₆₀₀ = 87.77\%, HRD₉₀₀ = 85.43\%, HRD₁₂₀₀ = 82.70\%). Shen et al. [31] also found that the S_{100} of La_{0.8-x}Ce_xMg_{0.2}Ni_{3.5} (x = 0-0.2) alloy reaches 73.33%.

As above-mentioned, the studies in the electrochemical properties of the A₂B₇ type alloys doped by Ce are still not sufficient, and the range of doping amount of Ce is also a bit broad to a certain degree, hence more detailed researches are still needed to be carried out. In the present work, the annealed Ce-added $La_{0.75-x}Ce_xMg_{0.25}Ni_3Co_{0.5}$ alloys are prepared, and a systematic study about Ce content on structural and electrochemical properties of the alloy is carried out.

2. Experimental

2.1. Sample preparation

Ingots of La_{0.75-x}Ce_xMg_{0.25}Ni₃Co_{0.5} (x = 0, 0.05, 0.1, 0.15, 0.2 at.%) alloys were prepared by induction melting according to the nominal compositions under 0.3 MPa helium atmosphere, purity of all the component metals is at least 99.99 wt%. 10 wt% of extra Mg were added to compensate for the elemental loss during melting process. Afterwards, the samples were annealed at 1173 K in a vacuum furnace for 8 h, and then crushed and grinded into Download English Version:

https://daneshyari.com/en/article/5458541

Download Persian Version:

https://daneshyari.com/article/5458541

Daneshyari.com