Accepted Manuscript

Room temperature multiferroism in polycrystalline thin films of gallium ferrite

Monali Mishra, Amritendu Roy, Ashish Garg, Rajeev Gupta, Somdutta Mukherjee

PII: S0925-8388(17)31885-6

DOI: 10.1016/j.jallcom.2017.05.268

Reference: JALCOM 41999

To appear in: Journal of Alloys and Compounds

Received Date: 6 January 2017 Revised Date: 23 April 2017

Accepted Date: 26 May 2017

Please cite this article as: M. Mishra, A. Roy, A. Garg, R. Gupta, S. Mukherjee, Room temperature multiferroism in polycrystalline thin films of gallium ferrite, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.05.268.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 Room temperature multiferroism in polycrystalline thin films of gallium ferrite

- 2 Monali Mishra¹, Amritendu Roy², Ashish Garg³, Rajeev Gupta^{4,5} and Somdutta Mukherjee^{1,*}
- 3 ¹ Colloids and Materials Chemistry Department, CSIR-IMMT Bhubaneswar-751013, India
- 4 ² Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology,
- 5 Bhubaneswar-751007, India
- ³ Materials Science and Engineering, Indian Institute of Technology, Kanpur-208016, India
- 7 ⁴ Department of Physics, Indian Institute of Technology, Kanpur-208016, India
- 8 Materials Science Programme, Indian Institute of Technology, Kanpur-208016, India

9

- 10 Keywords: polycrystalline thin films, multiferroics, ferrimagnetism, ferroelectricity
- 11 Abstract
- We have synthesized (010) textured polycrystalline thin films of gallium ferrite (GaFeO₃ or
- GFO) on n-Si(100) and Pt/Si(111) substrates using sol-gel assisted spin coating technique.
- 14 Structural characterization using x-ray diffraction and Raman spectroscopy confirms
- 15 formation of single phase with crystallite size ~37-47 nm. Magnetic characterization
- demonstrates saturated magnetic hysteresis loop at room temperature and indicates that due to
- 17 reduced crystallite size, ferri to paramagnetic transition temperature, T_C ~300 K is higher
- compared to bulk GFO, reported earlier. Room temperature piezo-response force microscopic
- analysis reveals local ~180° phase switching of ferroelectric domains at very high coercive
- 20 field, ~700 kV/cm, consistent with recent experimental and first-principles studies. Our study
- 21 opens up the possibility of integrating polycrystalline GFO in novel room temperature
- 22 multiferroic devices.
- 23 Introduction
- 24 Multiferroics are considered as the next generation digital memory materials owing to their
- 25 unique attributes such as low energy consumption, fast read-write operation and
- 26 extraordinary memory storage capability. [1, 2] Unfortunately, room temperature
- 27 multiferroics are rare due to competing requirements of ferroelectricity and magnetism.[3]
- 28 The most extensively studied room temperature multiferroic, bismuth ferrite (BiFeO₃)[4]
- 29 demonstrates weak/no net magnetization at room temperature limiting its application
- 30 potential. Thus, search for newer multiferroics with appreciable room temperature properties

_

Download English Version:

https://daneshyari.com/en/article/5458637

Download Persian Version:

https://daneshyari.com/article/5458637

<u>Daneshyari.com</u>