Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Crystal structure, Raman spectroscopy and microwave dielectric properties of Ba_{3.75}Nd_{9.5}Ti_{18-z}(Al_{1/2}Nb_{1/2})_zO₅₄ ceramics

ALLOYS AND COMPOUNDS

霐

Zhe Xiong ^{a, b}, Bin Tang ^{a, b, *}, Zixuan Fang ^{a, b}, Chengtao Yang ^{a, b}, Shuren Zhang ^{a, b}

^a National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Jianshe Road. Chengdu, 610054. People's Republic of China

^b State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Jianshe Road, Chengdu, 610054, People's Republic of China

ARTICLE INFO

Article history: Received 2 April 2017 Received in revised form 11 June 2017 Accepted 23 June 2017 Available online 24 June 2017

Keywords: Microwave ceramics Substitution Rietveld analysis Raman spectroscopy

ABSTRACT

The influences of substitution of $(Al_{1/2}Nb_{1/2})^{4+}$ on the crystal structure, Raman spectroscopy and microwave dielectric properties in Ba_{3.75}Nd_{9.5}Ti₁₈O₅₄ (BNT) ceramics were investigated in this work. The sintering samples were mainly measured by SEM, XRD and Raman spectrometer. The results showed that all Ba_{3.75}Nd_{9.5}Ti_{18-z}(Al_{1/2}Nb_{1/2})_zO₅₄ (BNT-(AN)*z*) samples formed the orthorhombic tungsten-bronze type like structure. Lattice parameters of BNT-(AN)*z* samples were refined by Rietveld method, and unit cell volume of samples decreased as *z* increased. The blue shift of Raman spectral peaks was confirmed to the result of Rietveld refinement. Moreover, Raman spectra revealed that flexible oxygen octahedra networks became stressed-rigid and oxygen octahedra became more tilted, which was ascribed to Al³⁺ and Nb⁵⁺ occupational disorder when $(Al_{1/2}Nb_{1/2})^{4+}$ substituted for Ti⁴⁺. With increase of *z* value, the dielectric constant (ε_r) and temperature coefficient of resonant frequency (τ_f) decreased. The BNT-(AN)*2* ceramic sintered at 1375 °C for 4 h exhibited excellent microwave dielectric properties: $\varepsilon_r = 73.9$, $Q \times f = 13,177$ GHz, and $\tau_f = +0.3$ ppm/°C. The relationship of the bond valence of the B-site to Raman shift of the A_g mode, dielectric constant (ε_r) and τ_f were analyzed.

© 2017 Published by Elsevier B.V.

1. Introduction

In recent years, the rapid progress of modern wireless communication applications, such as wireless charging, Virtual Reality (VR) and self-driving technology has stimulated the development of microwave dielectric ceramics to meet the demand of microwave device including resonators, oscillator and wave guides [1,2]. With respect to microwave applications, the materials should have high relative permittivity (ε_r), high quality factor (Q×*f*) and near zero temperature coefficient of resonant frequency (τ_f), which are necessary to achieve high miniaturization, integration and reliability in microwave communication system [3].

For decades, $Ba_{6-3x}Nd_{8+2x}Ti_{18}O_{54}$ solid solution-based ceramics have drawn an increasing interest for their high ε_r and high $Q \times f$ value, and they have attracted many scientific research personnel

E-mail address: tangbin.uestc@gmail.com (B. Tang).

to study them. In 1996, Negas [4] studied the microwave dielectric properties of $Ba_{6-3x}Nd_{8+2x}Ti_{18}O_{54}$ ceramics as x value changes. What's more, many senior scientists have investigated the structure of BaO-Nd₂O₃-TiO₂ ternary compounds by various analysis methods, and they all announced that the crystal structure of Ba₆₋ _{3x}Nd_{8+2x}Ti₁₈O₅₄ ceramics contained elements of tungsten-bronze [5–8]. As shown in Fig. 1, the 2×2 perovskite block took shape in tungsten-bronze type like structure, Ti⁴⁺ and O²⁻ formed titaniumoxygen octahedra [TiO₆], then Ba^{2+} and Nd^{2+} occupied A1, A2 site respectively in titanium-oxygen octahedra [TiO₆] interstice. It was reported that the τ_f value of Ba_{6-3x}Nd_{8+2x}Ti₁₈O₅₄ solid solution series were affected by tilting of the TiO_6 octahedra [9–11]. But their large positive τ_f value (+65 to +130 ppm/°C) always retarded their wide utilization [8,12,13]. Among Ba_{6-3x}Nd_{8+2x}Ti₁₈O₅₄ solid solutions series, the excellent properties of $Ba_{3.75}Nd_{9.5}Ti_{18}O_{54}(x = 3/4)$ (BNT) ceramics ($\varepsilon_r > 80$, $Q \times f > 9000$ GHz, $\tau_f \sim 70$ ppm/°C) deserves further attention [13,14]. Many researchers have studied modified $Ba_{6-3x}Nd_{8+2x}Ti_{18}O_{54}$ solid solutions. For example, Nenasheva et al. determined the Zr^{4+} substitution was in favour of lower τ_f in BaNd₂Ti₄O₁₂ ceramics but resulted in deteriorative ε_r and Q×f values [15]. Later, the Ba4(Sm0.5Nd0.5)28/3Ti18O54 and Ba4Nd9.33-

^{*} Corresponding author. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Jianshe Road, Chengdu, 610054, People's Republic of China.

Ti₁₈O₅₄ with Al₂O₃ addition were synthesized by Chang [16] and Yao [17] respectively. Huang et al. [18]. Reported that $(Ba_{1-x}Sr_x)$ $4(Sm_{0.4}Nd_{0.6})_{28/3}Ti_{18}O_{54}$ composition showed properties of $\varepsilon_r = 93.2$, $Q \times f = 9770$ GHz, $\tau_f = + 4.56$ ppm/°C when x = 0.08. In addition, there were many papers about properties and structure of impure BNT ceramics by other cations substituting for B-site (Ti⁴⁺), such as $(Cr_{1/2}Nb_{1/2})^{4+}$ [14], Al³⁺ [9], $(Mg_{1/3}Nb_{2/3})^{4+}$ [19] and so on.

All these works didn't investigate the relationship between structure of BNT ceramics and their microwave dielectric properties by using Raman spectroscopy. Raman spectrum analysis of BNT-(AN)*z* ceramics would be momentous for BNT ceramics and set a model for the modified ceramic investigation.

2. Experimental procedures

2.1. Preparation of BNT-(AN)z

The starting raw powders: BaCO₃, Al₂O₃, Nd₂O₃ Nb₂O₅ and TiO₂ were high-purity (99.0%) powders and weighed according to the ratio of Ba_{3.75}Nd_{9.5}Ti_{18-z}(Al_{1/2}Nb_{1/2})_zO₅₄ (BNT-(AN)z) where z = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0. And milled in plastic jars using deionized water for 8 h. The resulting mixtures were calcined at 1100 °C for 5 h in air with 5°C/min heating rate. Then these calcined powders were produced with 7 wt% of a 10% solution of PVA added in the size of 15 mm in diameter and 8 mm in thickness under the pressure of 200 kg/cm². At last, the samples were preheated at 1350–1425 °C for 3 h to exclude the organic binder, and sintered at 1350–1425 °C for 4 h in air.

2.2. Characterization

After sintering completely, the bulk densities of samples were measured by the Archimedes method. The crystalline phases of the samples were determined with XRD using CuK<alpha> radiation (Philips x'pert Pro MPD, Netherlands). The visualization of crystal structure of ceramics was acquired by VESTA software with ceramics crystallography data [20]. The refinement of crystal unit cell parameters of samples was calculated by analyzing XRD data using the "Material Analysis Using Diffraction" (MAUD) based on the

Fig. 1. Schematic representation of (a) $Ba_{3,75}Nd_{9.5}Ti_{18}O_{54}$ with tungsten-bronze type like structure and (b) the c-axis was chosen as the short axis.

Rietveld method [21,22]. The microstructure of the samples was investigated by scanning electron microscopy(SEM) (FEI Inspect F, United Kingdom) coupled with energy dispersive spectrometer(-EDS) which detected the main chemical composition of specimens. Raman spectra of the samples were measured on Nicolet ALMEGA Raman spectrometer with the existing line at 523 nm of a Nd/YAG laser at room temperature, and collected in the range of 100–1000 cm⁻¹. The dielectric characteristics at microwave frequencies were measured by the Hakki–Coleman dielectric resonator method in the TEO11 mode using a network analyzer (Agilent Technologies HP83752A) and a temperature chamber (DELTA 9023, Delta Design, USA). The temperature coefficient of resonant frequency (τ_f) of specimens was determined from the difference between the resonant frequency (2 ~ 3 GHz) obtained at 25 °C and 85 °C using Eq. (1):

$$\tau_f = \frac{\Delta f}{f_0 \cdot \Delta t} \times 10^6 = \frac{f_{85^{\circ}C} - f_{25^{\circ}C}}{f_{25^{\circ}C} \times (85 - 25)} \times 10^6 \;(\text{ppm}/^{\circ}\text{C}) \tag{1}$$

In Eq. (1), $f_{25 \circ C}$ and $f_{85 \circ C}$ represent the resonant frequency at 80 °C and 25 °C, respectively. All cylindrical samples were untreated after sintering when they were made to do dielectric measurements.

3. Results and discussion

3.1. Crystalline structure and microstructure

The X-ray diffractograms of BNT-(AN)z (z = 0-3) ceramics sintered at 1375 °C for 4 h in air are shown in Fig. 2 (a). All samples were crystalized as a tungsten-bronze type like structure phase BaNd₂Ti₅O₁₄ (JCPDS No. 33–0166) and no peaks for secondary phase were detected, which implied that it did form a single phase and composite ions $(Al_{1/2}Nb_{1/2})^{4+}$ had entered into crystal cell. Furthermore, Fig. 2 (b) depicts that the diffraction peaks of all samples shift towards the higher angle with the increase of *z* value. The intensity of the splitting peak (as shown in Fig. 2 (b)) gradually increased when *z* value increased 0 to 3. We can see from the XRD patterns of the JCPDS No. 33–0166 in Fig. 2 (a), the strongest diffraction peak of (151) face ($2\theta = 31.57^{\circ}$) was very close to diffraction peak (270) face ($2\theta = 31.63^{\circ}$). So the splitting peak

Fig. 2. (a) XRD patterns of BNT-(AN)z (z = 0-3) ceramics sintered at 1375 °C for 4 h in air. (b) The characteristic peaks of (270) and (151) for BNT-(AN)z phase of corresponding samples.

Download English Version:

https://daneshyari.com/en/article/5458742

Download Persian Version:

https://daneshyari.com/article/5458742

Daneshyari.com