FISEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Structure, chemical state and photocatalytic activity of TiO_{2-x} nanostructured thin films by glancing angle deposition technique

Bin Wang ^{a, b}, Hongji Qi ^{a, *}, Zhongqing Liu ^{c, **}, Yaxue Jin ^{a, b}, Hu Wang ^{a, b}, Jiali Yuan ^{a, b}, Jiaoling Zhao ^{a, b}, Jianda Shao ^a

- ^a Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, PR China
- ^b University of Chinese Academy of Sciences, Beijing, 1000492, PR China
- ^c School of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China

ARTICLE INFO

Article history: Received 23 September 2016 Accepted 5 May 2017 Available online 6 May 2017

Keywords: Glancing angle deposition Oxygen vacancies Ti³⁺ doped state Photocatalytic activity

ABSTRACT

Nonstoichiometric titanium dioxide nanostructured thin film (TNF) has attracted a range of interest in the green energy field. In this paper, we introduce the glancing angle deposition (GLAD) technique to produce the amorphous TNFs with discrete nanoscale columnar structures. In order to improve the crystallinity and/or gain the ${\rm Ti}^{3+}$ doped states, amorphous TNFs were annealed at 400 °C in air or H₂. XRD, SEM, AFM, XPS and PL were used to characterize the crystallization structure morphology, chemical state, PL properties of the TNFs with different annealing conditions. Photocatalytic activities of the samples were reflected by decolorization experiments of methylene blue (MB) solution irradiated by the simulated sunlight light of AM 1.5 G. The photocatalytic activity of amorphous TNF is higher than that of conventional ${\rm TiO}_2$ thin film, indicating the prominent properties of nanostructures. Compared with annealing in air, the photocatalytic activity of ${\rm TiO}_{2-x}$ nanostructures annealed in hydrogen is further increased and higher. The results demonstrated that ${\rm Ti}^{3+}$ and oxygen vacancies were beneficial and played the dominant role for the enhancement of photocatalytic activity.

© 2017 Published by Elsevier B.V.

1. Introduction

Due to the large surface-to-volume ratio, availability, low cost, non-toxicity and high chemical stability, titanium dioxide nano-structured thin film (TNF) has motivated more and more researchers to active in photo-catalytic performance [1]. For producing the TiO₂ nanostructured materials, a wide variety of fabricating methods, including the sol—gel approach [2], hydrothermal [3,4], electrospinning methods [5], atomic layer deposition [6,7], and anodization [8] etc. have been reported. Taking full advantage of chemical synthesis methods, one can obtain the relatively budget and facile one-pot routes to quickly produce titanium oxide nanostructures. Nevertheless, these chemical synthesis routes could cause TiO₂ nanostructures with the defects of low-purity [4], large mechanical instability [9] and low crystal quality [10]. The physical vapor deposition technique is beneficial

for the fine adhesive force and high crystallinity of the ${\rm TiO_2}$ nanostructures.

As a miscellaneous nanostructured thin film preparation technique based on the self-shadowing effect, the glancing angle deposition (GLAD) technique could produce the unique characteristics including topological sculptured thin film, heteronanostructure design and constituent adjustment [11]. The inclined incident particles will lead to nanostructured films with titled, zigzag and helical nanorods structures [12-15]. The height, diameter and the length of nanorods can be tailored by the substrate rotation speed and the deposition rate. These outstanding technical properties of GLAD can more accurately control the morphology of the nanostructure than the chemical synthesis methods. Motofumi Suzuki et al. [16] demonstrated the optimum morphology for photocatalytic activity of TiO₂ sculptured thin film could be available at the deposition angle $\varphi = 70^{\circ}$, irrespective to shape of columns such as zigzag, cylinder and helix. Wilson Smith et al. [17,18] studied the photocatalytic activities of WO₃/TiO₂ and Cr: TiO₂ nanorods fabricated by the GLAD technique.

Recently, self-doped (Ti³⁺ and/or oxygen vacanies) TiO_{2-x}

^{*} Corresponding author.

^{*} Corresponding author.

E-mail addresses: qhj@siom.ac.cn (H. Qi), liuzq_hgxy@scu.edu.cn (Z. Liu).

[19–21] has been reported as an effective material to extend the light absorption [22] due to localized oxygen vacany states from 0.75eV to 1.18eV below the conduction band [20]. Diffenence from the conventional doping methods (incorporating metal ions, nonmetal or rare earth elements) [23,24], oxygen vacanies (or Ti³⁺ ions) as the self-doping style introduce none impurity elements [25]. It is very advantageous to maintain the intrinsic TiO₂ phase and reduce the recombination of electron-hole pairs. Several techniques have been adopted to produce TiO_{2-x} including heating TiO₂ under vacuum or reducing conditions (H₂, CO etc.), high energy particle (laser, electron, or r-ray etc.) bombardment [26]. The high energy particle irradiation methods are much restricted and unsuitable for large-scale production because of the high cost and complicated procedures. Fan Zuo et al. [20] fabricated partially reduced TiO₂ powder by the reducing gas and studied its enhanced hydrogen production activity. Xiaobo Chen et al. [21] demonstrated a conceptually different approach to enhancing solar absorption by introducing disorder and Ti³⁺ vacanies in TiO₂ nanocrystals surface through hydrogenation. Alberto Naldoni et al. [27] studied the effect of nature and location of defects on bandgap narrowing in black TiO₂ nanoparticles obtained through one-step reduction process i.e. annelaing treatment in H2 stream. In aggregate, annealing in reducing atmosphere is a practical and available technique. All of these papers cited study the TiO2 powders, however, a post-filtration procedure must be required for recovering the powder dispersion from the reacted water [28]. In addition, the unclear detailed structure, chemical state comparison after hydrogenation as well as the machanism of high photoactivity are still not clear. Therefore, studing the structure, chemical states and photocatalytic activity of self-doped TiO_{2-x} nanostructured thin films deposited by GLAD is necessary and meaningful.

In this paper, amorphous TNFs were deposited by the GLAD system. Amorphous TNFs were annealed at 400 °C in air and H₂ to improve the crystallization and gain the Ti³⁺ doped states. TNF annealed in H2 shows excellent stability with the faint yellow color storage in ambient for one year. The changes of morphology, crystallization structure, Ti/O chemical state, PL properties and surface modification of TNFs with different annealing treatments have been characterized and discussed. Photocatalytic activity of TNFs has been reflected by decolorization of methylene blue (MB) solution irradiated by full solar irradiation at AM 1.5 G. The MB decolorization rate of amorphous TNF is higher than that of conventional TiO₂ thin film with 0° deposition. TiO_{2-x} nanostructured thin films annealed in H_2 exhibit higher photocatalytic activity than that annealed in air, which indicated the ratio of Ti⁴⁺/Ti³⁺ in samples controls the photocatalytic efficiency. In this paper, we give a comprehensive understanding of TNFs annealed under different thermal treatment conditions and highlight the designing novel TiO_{2-x} nanostructured thin film.

2. Experimental section

2.1. Preparation of TNFs

Amorphous TNFs were fabricated with the GLAD system based on the electron beam deposition technique, which could be interpreted in the literature [11,15,29]. During the deposition process of GLAD, the inclined substrate controlled by two step-motors results in a self-shadowing effect, resulting in the orientation growth of the protrusion towards the incident vapor. Prior to deposition, the prepared fused silica glass substrates were ultrasonically cleaned in acetone and ethanol for 30 min. The deposition angle φ i.e. the angle between the incident particle flux and the substrate normal was fixed to be 70°. With the 1.5 × 10⁻⁵ Torr background pressure of the vacuum chamber, the pure oxygen with a 200 sccm gas flow

rate was filled in the vacuum chamber for achieving the 2 mTorr working pressure. Without the substrates rotation and heating, the granular TiO_2 material (purity 99.99%) completely premelted was evaporated to the substrate surface with the 27 cm evaporation distance. Amorphous TNFs as-deposited were annealed to improve crystallization in the muffle furnace. In view of our previous the results [15,29], the annealing conditions are set to $400\,^{\circ}\text{C}$ for 2 h in air or H_2 . The samples are labeled TNF as-grown, TNF $400\,^{\circ}\text{C}$ and TNF $400\,^{\circ}\text{C}$ H_2 , respectively.

2.2. Characterizations

The morphologies of samples were characterized by the Hitachi S-4700, Auriga, Carl Zeiss field emission scanning electron microscopy and Veeco Dimension 3100 atomic force microscope. The Xray diffraction (XRD) structures of TNFs were characterized with Empyrean PANalytical X-ray diffractometer (Rigaku D/MAX-2550 with Cu Ka, $\lambda = 1.5408$ Å) within $20^{\circ}-80^{\circ}$ range. Raman spectra were measured using a Renishaw Invia Raman Spectrometer with a 532 nm wavelength laser for exciting samples. The optical properties of TNFs were measured by the Lambda 900 spectrophotometer within the range from 300 nm to 800 nm. The K-Alpha Thermo Scientific X-ray photoelectron spectroscopy (XPS) with the Al Kα emission at 1486.6 eV was performed to characterize the Ti ions chemical binding energy of samples. PL measurements were obtained using a 350 nm excitation light of 4 mW Kr ion laser. The scattered light was reduced with a long-pass filter, and the emission spectra were probed with a single monochromator and CCD detection using backscattering geometry.

2.3. Photocatalytic activity measurements

The photocatalytic activities of the samples are reflected by decolorization of methylene blue (MB) aqueous solutions at ambient temperature under illumination of AM 1.5 G at 200 mm from the reactor. The initial concerntration of MB solution was 10 mg/L MB. Prior to irradiation, the MB solution were magnetically stirred in the dark for 120 min to ensure the adsorption/desorption equilibrium of MB on the photocatalyst. The solution samples were collected from the reactor at once every 30 min intervals, and analyzed to determine the amounts of residual MB after photo-irradiation

3. Results and discussion

3.1. Structure analysis

XRD diffraction patterns of TNFs are shown in Fig. 1. Amorphous films as-deposited can be achieved with the noncrystalline and unheated fused silica glass substrates. The amorphous TiO₂ films annealed at around 350 °C in air transformed into the anatase phase. In view of our previous results [15,29], TNF was annealed under 400 °C in air for 2 h to achieve the best crystalline and morphology structure. The average crystallite sizes of samples could be calculated by the Scherrer's formula according to $D = K \lambda / J$ $B\cos\theta$, where the B is the peak width at half maximum of the XRD peak, K is the constant equal to 0.89, λ is equal to 1.54059 Å, and θ is the reflection angle. The average crystallite sizes of TNF 400 °C is 103 Å. However, the XRD pattern of TNF 400 °C H₂ exhibits the very weak and broad anatase A(105) peak and another undefined peak, which is contributed to the lack of oxygen. Therefore, different atmospheres could affect the cooperative atom diffusion, causing the different crystal qualities.

Raman spectroscopy as a local probe is a sensitive spectrum technology to measure molecular vibration, which could detect the

Download English Version:

https://daneshyari.com/en/article/5458909

Download Persian Version:

https://daneshyari.com/article/5458909

<u>Daneshyari.com</u>