Journal of Alloys and Compounds 714 (2017) 26-34

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Solvothermal access to rich nitrogen-doped molybdenum carbide nanowires as efficient electrocatalyst for hydrogen evolution reaction

Jing-Qi Chi^a, Kai-Li Yan^a, Wen-Kun Gao^{a, b}, Bin Dong^{a, b, *}, Xiao Shang^a, Yan-Ru Liu^a, Xiao Li^a, Yong-Ming Chai^a, Chen-Guang Liu^{a, **}

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China ^b College of Science, China University of Petroleum (East China), Qingdao 266580, PR China

A R T I C L E I N F O

Article history: Received 6 March 2017 Received in revised form 16 April 2017 Accepted 19 April 2017 Available online 20 April 2017

Keywords: Mo₂C Nanowires Nitrogen-doping Electrocatalyst Hydrogen evolution reaction

ABSTRACT

Rich N-doped molybdenum carbide (Mo₂C) nanowires for hydrogen evolution reaction (HER) have been prepared by a facile calcination-solvothermal treatment utilizing inorganic-organic hybrid MoO_x/aniline as precursor. Firstly, MoO_x/aniline nanowires provide one-dimensional nanostructure and N element for the synthesis of N-doped Mo₂C through calcination process. XRD and SEM show that uniform N-doped Mo₂C nanowires with β -Mo₂C phase can be obtained after calcination of 750 °C. The electrocatalytic measurements show N-doped Mo₂C nanowires of 750 °C exhibit the better activity compared with other samples at 650 °C, 850 °C and 950 °C. Furtherly, ammonium-hydrazine solvothermal process has been used to optimize the N-doping degree of N-doped Mo₂C of 750 °C. XRD shows that rich N-doped Mo₂C nanowires contain the crystalline phase structure, which can be identified by HRTEM. XPS, EDX and elemental mapping data reveal the good distribution and valence of Mo, C and N. The electrocatalytic measurements confirm that rich N-doped Mo₂C possesses the lower overpotential, smaller Tafel slope, larger double-layer capacitances and excellent long-term stability after 5000 cycles than other samples, which may be attributed to ammonium-hydrazine solvothermal process. Therefore, Mo-based inorganic-organic hybrid nanostructure may be a promising precursor for excellent HER electrocatalysts through a facile calcination-solvothermal treatment.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As the energy crisis and environmental problem become more severe, clean and sustainable energy sources have been widely explored. Hydrogen energy as a clean and renewable energy carrier has been considered to replace traditional fossil fuels [1–4]. In this regard, water splitting using electrochemistry into H₂ has been widely regarded as one of the most promising pathways for hydrogen evolution reaction (HER) [5–10]. Currently, noble metal Pt-based electrocatalysts are still the best electrocatalysts for HER due to its ideal hydrogen adsorption (ΔG_{H^*}) and low activation energy for H desorption from the surface of Pt [11–13]. However, the disadvantages of noble metals are the limited reserves, easy deactivation and high price which hamper their large-scale

** Corresponding author.

applications [14]. Thus, it is vital important to develop earthabundant electrocatalysts with high HER activity.

Because of Pt-like electrochemical behaviors [15], Mo-based compounds, such as Mo₂C [16,17], MoN [18] and MoS₂ [19–23] have accumulated substantial interest as new noble-metal free electrocatalysts. Especially, Mo₂C has been found to exhibit electrocatalytic performances for HER due to the high conductivity, similar d-band electronic density-of-state to that of Pt and optimal hydrogen-adsorption energy [24]. For instance, Lan et al. reported Mo₂C supported on reduced graphene oxide with low onset overpotential for HER [25].

To maximum the activity of electrocatalysts for HER, two strategies including designing unique nanostructures [26] to expose more active sites or doping other element [27] to tailor the electronic structure usually have been applied. For elemental doping, nitrogen-doped materials have accumulated great attention as highly effective catalysts [12,28–31]. For instance, Xie et al. reported that N-doping can result in increased oxygen divacancies relative to synthesized materials without N-doping, which leads to

^{*} Corresponding author. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China.

E-mail addresses: dongbin@upc.edu.cn (B. Dong), cgliu@upc.edu.cn (C.-G. Liu).

much higher HER activity. In addition, density-functional calculations exhibited that the production of oxygen divacancies leads to improved states density near to the valence band edge, which favors for improved electronic conductivity [32]. Thus, it can be predicted that N-doping may be a promising strategy for achieving enhanced catalytic performances of Mo₂C-based catalysts. However, the systematic researches about N-doping of Mo₂C by facile solvothermal method have been seldom reported and it is still urgently needed to control morphology of N-doped Mo₂C in promoting HER using an effective method [33].

Herein, we reported a facile calcination-solvothermal process utilizing inorganic-organic hybrid MoO_x/aniline nanowires to synthesize rich N-doped Mo₂C for efficient HER (in Fig. 1). Firstly, calcination process has been used to synthesize N-doped Mo₂C nanowires using inorganic-organic hybrid MoO_x/aniline as precursor at different calcination temperature including 650 °C, 750 °C, 850 °C and 950 °C in Ar atmosphere. Secondly, the ammonium-hydrazine solvothermal method has been applied to convert N-doped Mo₂C of 750 °C into rich N-doped Mo₂C. The enhanced HER performances of rich N-doped Mo₂C are obtained with lower overpotential, smaller Tafel slope, lower charge-transfer resistance, larger double-layer capacitances, which may be attributed to the uniform nanowire structures and high conductivity derived from optimized N-doping. Therefore, designing uniform rich N-doped Mo₂C nanowires by facile solvothermal method provide a new way towards high-efficiency HER electrocatalysts.

2. Experimental

All of reagents were analytical grade and used without any further purification. The synthesis of $Mo_3O_{10}(C_6H_8N)_2\cdot 2H_2O$ nanowires was carried out in the reaction where ammonium molybdate has been converted into anilinium molybdate by complex formation with aniline as reported earlier [34]. 2.48 g ammonium heptamolybdate and 3.34 g of aniline were dissolved in 40 mL distilled water. And then 1 M HCl aqueous solution was added dropwise with magnetic stirring until pH = 4. After a reaction at 50 °C for 2 h, the product was filtered and washed with deionized water and ethanol for several times, and then dried at 50 °C for 24 h in a vacuum oven.

N-doped Mo₂C nanowires was prepared through carbonization process under a flow of ultrapure argon atmosphere at 750 °C for 3 h at a heating rate of 5 °C min⁻¹. To explore the performance of Mo₃O₁₀(C₆H₈N)₂·2H₂O nanowires heated with different temperatures, the obtained Mo₃O₁₀(C₆H₈N)₂·2H₂O nanowires was calcinated at 650 °C, 850 °C and 950 °C keeping other conditions

unchanged, respectively.

For the synthesis of rich N-doped Mo₂C, 20 mL distilled water containing mixture of obtained N-doped Mo₂C nanowires (750 °C), 5 mL ammonium hydroxide solution and 2 mL hydrazine hydrate solution were added into the 100 mL Teflon-lined autoclave and then was sealed and experienced a hydrothermal treatment at 150 °C for 6 h. The final product was collected by centrifugation at 4000 r.p.m. for 10min, and then filtered with water and dried in oven at 50 °C.

Structure of all the samples were characterized by X-ray powder diffraction (XRD, X'Pert PRO MPD, Cu KR) with the range of 2θ from 10° to 70° . X-ray photoelectron spectra (XPS) were performed on a Thermo Fisher Scientific II spectrometer using an Al Ka photon source to study the valence state of all obtained samples. The morphology of the samples was investigated by scanning electron microscopy (SEM, Hitachi, S-4800). Transmission electron microscopy (TEM, FEI Tecnai G2) and high-resolution TEM (HR-TEM) were used to investigate the crystal structure of rich N-doped Mo₂C nanowires. Mapping and EDX were used to identify the main elements of the representative surface area of samples.

HER electrochemical measurements have been carried out using a standard three-electrode system in solution of 0.5 M H₂SO₄ (purging N₂ for 30 min in advance to saturate the electrolyte) on the electrochemical workstation (Gamry Reference 600 Instruments, USA). Ag/AgCl (3 M KCl) and Pt foil were used as reference and counter electrodes respectively. The working electrode was prepared on glassy carbon electrode (GCE), which was polished with alumina slurry then ultrasonicated in water. 5 mg of as-obtained sample was dispersed in 1 mL water-ethanol solution with volume ratio of 1:1 containing 20 µL Nafion solution (5 wt %) by sonicating for 1 h to form a homogeneous ink. Then 5 µL of the dispersion was loaded onto the GCE with the geometric area of 0.1256 cm². Linear sweep voltammetry (LSV) plots were used to investigate the HER activity of samples from 0 V to -0.7 V (vs. Ag/ AgCl) with a scan rate of 10 mV s^{-1} . Electrochemical impedance spectroscopy (EIS) measurements were recorded at an overpotential of -0.42 V (vs. Ag/AgCl) with a frequency range from 10⁵ Hz to 0.1 Hz. Cyclic voltammograms (CV) were used to evaluate the long-term stability of samples from -0.35 V to -0.45 V (vs. Ag/ AgCl) at a scan rate of 100 mV s^{-1} for 5000 cycles.

3. Results and discussion

XRD of obtained $Mo_3O_{10}(C_6H_8N)_2\cdot 2H_2O$ nanowires is displayed in Fig. 2a. Fig. 2a shows that the peaks of the sample are highly consistent with the standard card (PDF No. 00-050-2402) of

Fig. 1. Schematic illustration of the synthesis process for rich N-doped Mo₂C.

Download English Version:

https://daneshyari.com/en/article/5459068

Download Persian Version:

https://daneshyari.com/article/5459068

Daneshyari.com