Accepted Manuscript

Novel 122-type Ir-based superconductors Balr₂Mi₂ (Mi = P and As): A density functional study

Md. Zahidur Rahaman, Md. Atikur Rahman

PII: S0925-8388(17)31182-9

DOI: 10.1016/j.jallcom.2017.04.006

Reference: JALCOM 41407

To appear in: Journal of Alloys and Compounds

Received Date: 13 December 2016

Revised Date: 18 March 2017

Accepted Date: 1 April 2017

Please cite this article as: M.Z. Rahaman, M.A. Rahman, Novel 122-type Ir-based superconductors Balr₂Mi₂ (Mi = P and As): A density functional study, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.04.006.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Novel 122-type Ir-based superconductors BaIr₂Mi₂ (Mi = P and As): A density functional study

Md. Zahidur Rahaman¹

Department of Physics, Pabna University of Science and Technology, Pabna-6600, Bangladesh zahidur.physics@gmail.com

Md. Atikur Rahman^{2*}

Department of Physics, Pabna University of Science and Technology,
Pabna-6600, Bangladesh
atik0707phy@gmail.com
*Corresponding author.

Abstract

We explore the structural, electronic, bonding, mechanical, thermodynamic and superconducting properties of two newly discovered isostructural bulk superconductors barium iridium phosphide BaIr₂P₂ ($T_c \sim 2.1$ K) and barium iridium arsenide BaIr₂As₂ ($T_c \sim 2.45$ K). The optimized structural parameters of both the compounds show good agreement with the experimentally evaluated values. The replacement of P by As mostly affects the cvalue, whereas a remains approximately the same. Metallic conductivity is observed for both the superconductors. The analysis of DOS, Mulliken atomic populations and total charge density revel a complex bonding in BaIr₂P₂ and BaIr₂As₂ with ionic, covalent and metallic characteristics. Mechanical and dynamical stability of both the phases is confirmed by analyzing the elastic constant data. According to the calculated Pugh's ratio both the intermetallics are ductile in nature. Both the superconductors demonstrate anisotropic nature whereas the elastic anisotropy of BaIr₂P₂ is higher than that of BaIr₂As₂. The hardness of BaIr₂P₂ and BaIr₂As₂ is evaluated to be 6.92 GPa and 5.02 GPa respectively indicating the relative hardness of BaIr₂P₂ than that of BaIr₂As₂ superconductor. The Debye temperature of BaIr₂P₂ and BaIr₂As₂ has been calculated by using the elastic constant data to be 293.06 K and 258.47 K respectively. Finally the electronic specific heat coefficient, electron-phonon coupling constant, coulomb pseudo potential and superconducting critical temperature have been evaluated for both the compounds. We found weakly and moderately coupled bulk superconductivity in BaIr₂P₂ and BaIr₂As₂ with transition temperature 0.0057 K and 6 K respectively.

Keywords: BaIr₂P₂, BaIr₂As₂, Superconductivity, Physical properties.

I. Introduction

The discovery of superconductivity in Fe-based compounds gives a clear spur to the search for new superconductors with high superconducting critical temperature [1]. The material combination of iron pnictide is very promising for practical discovery of superconductors with high transition temperature. The combination of ternary 122-type materials is alike as that of so called iron pnictide and hence in this structure type the substitution of iron by any other transition metals provides a fresh route for the exploration of high T_c superconducting materials.

On the other hand the rare-earth compounds with AM_2X_2 type structure (where, A = lanthanide element or any alkaline earth element; M = transition metal; X = P, As, Ge or Si) have attracted a large scientific community with their many attractive properties including heavy fermion behavior, superconductivity, exotic magnetic order, mixed valency and valence fluctuation [2]. Since one possible route to explore high T_c superconductors is the substitution of Fe by other transition elements in the AM_2X_2 type structure, $ThCr_2Si_2$ structured compounds can be the great choice with more than seven hundred representatives. $ThCr_2Si_2$ structure type was first reported in 1965 by Ban and Sikirica

Download English Version:

https://daneshyari.com/en/article/5459263

Download Persian Version:

https://daneshyari.com/article/5459263

<u>Daneshyari.com</u>