Accepted Manuscript

Coexistence of weak ferromagnetism with magnetoelectric coupling in Fe substituted Co₄Nb₂O₉

C. Dhanasekhar, S.K. Mishra, R. Rawat, A.K. Das, A. Venimadhav

PII: S0925-8388(17)32710-X

DOI: 10.1016/j.jallcom.2017.07.323

Reference: JALCOM 42739

To appear in: Journal of Alloys and Compounds

Received Date: 16 May 2017 Revised Date: 28 July 2017 Accepted Date: 29 July 2017

Please cite this article as: C. Dhanasekhar, S.K. Mishra, R. Rawat, A.K. Das, A. Venimadhav, Coexistence of weak ferromagnetism with magnetoelectric coupling in Fe substituted Co₄Nb₂O₉, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.07.323.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Coexistence of weak ferromagnetism with magnetoelectric coupling in Fe substituted $Co_4 Nb_2 O_9$

C. Dhanasekhar^{1,3}, S. K. Mishra², R. Rawat², A. K. Das¹ and A. Venimadhav^{3*}

¹Department of physics, Indian Institute of Technology, Kharagpur -721302, India

²UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, 452017, Madhya Pradesh, India

³Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur -721302, India

Abstract

Co₄Nb₂O₉ (CNO) having Co chains along c-direction shows gigantic magnetoelelctric coupling below antiferromagnetic ordering temperature of 27.3 K but above a spin flop field of 1.6 T. We have investigated the effect of substitution of 20% of isovalent magnetic Fe²⁺ onmagnetic and magnetoelectric properties. With Fe substitution, magnetization with temperature has shown a weak ferromagnetic behavior at low magnetic fields and antiferromagnetic likebehavior at higher fields. Interestingly, linear magnetoelelctric and ferroelectric behaviors are evidenced in the Fe substituted samples but for an electric field as small as 5 kV/m and the magnetoelelctric coupling is ensured for magnetic fields as low as 0.25 T, which is far below the spin flop field. The reduction in single ion anisotropy of Co and modified Dzyaloshinkii-Moriya interactions with Fe appear to be important in inducing low field ME effect.

Key words: magnetoelectric, multiferroic, antiferromagnetic

Download English Version:

https://daneshyari.com/en/article/5459332

Download Persian Version:

https://daneshyari.com/article/5459332

<u>Daneshyari.com</u>