Accepted Manuscript

An excellent strategy for synthesis of coral-like ZnFe₂O₄ particles for capacitive pseudocapacitors

Ying Lin, Jiahao Zhang, Meng Li, Lei Wang, Haibo Yang

PII: S0925-8388(17)32714-7

DOI: 10.1016/j.jallcom.2017.07.328

Reference: JALCOM 42744

To appear in: Journal of Alloys and Compounds

Received Date: 20 June 2017 Revised Date: 29 July 2017 Accepted Date: 31 July 2017

Please cite this article as: Y. Lin, J. Zhang, M. Li, L. Wang, H. Yang, An excellent strategy for synthesis of coral-like ZnFe₂O₄ particles for capacitive pseudocapacitors, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.07.328.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

An excellent strategy for synthesis of coral-like ZnFe₂O₄ particles for

capacitive pseudocapacitors

Ying Lin^a, Jiahao Zhang^a, Meng Li^b, Lei Wang^a, Haibo Yang^{*a}

a, School of Materials Science and Engineering, Shaanxi University of Science and

Technology, 710021, Xi'an, China

b, College of Power Engineering, Chongging University, 400044, Chongging, China

Abstract

Herein, coral-like ZnFe₂O₄ particles were prepared by a stepwise strategy, which

contains a synthesis process and a subsequent etching process. Etching process can greatly

improve the specific surface area of the ZnFe₂O₄. The specific surface area of the coral-like

ZnFe₂O₄ particles is 200 times larger than the un-etched ZnFe₂O₄ particles. The ferric ion of

ZnFe₂O₄ can be reduced gradually by hydrazine to form Fe²⁺, which will be coordinated with

methyl mercaptoacetate to dissolve in DMF. Etched coral-like ZnFe₂O₄ particles have been

tested as an electrode material for supercapacitor through electrochemical analysis. Etched

coral-like ZnFe₂O₄ particles display a larger specific capacitance (~471 F g⁻¹) than the

un-etched ZnFe₂O₄ particles (~162 F g⁻¹) at a scan rate of 2 mV s⁻¹. An excellent stability of

cycling performance with 80.6% specific capacitance retention after 3000 cycles can be

achieved. The results suggest that the as-prepared ZnFe₂O₄ particles might be of potential

application for supercapacitor electrode materials. The strategy paves an efficient way for

synthesizing new ferrite particles with high specific surface area for the electrode material of

supercapacitor.

Keywords: Supercapacitor, ZnFe₂O₄, Etching

* Corresponding author. Tel: +86-29-86168688; Fax: +86-29-86168688; Email: yanghaibo@sust.edu.cn

Download English Version:

https://daneshyari.com/en/article/5459333

Download Persian Version:

https://daneshyari.com/article/5459333

<u>Daneshyari.com</u>