Accepted Manuscript

Orientation dependent compression behavior of Co₃₅Ni₃₅Al₃₀ single crystals

Peizhen Li, Haluk E. Karaca, Yury I. Chumlyakov

PII: S0925-8388(17)31528-1

DOI: 10.1016/j.jallcom.2017.04.307

Reference: JALCOM 41711

To appear in: Journal of Alloys and Compounds

Received Date: 16 February 2017

Revised Date: 25 April 2017 Accepted Date: 27 April 2017

Please cite this article as: P. Li, H.E. Karaca, Y.I. Chumlyakov, Orientation dependent compression behavior of Co₃₅Ni₃₅Al₃₀ single crystals, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.04.307.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Orientation Dependent Compression Behavior of Co₃₅Ni₃₅Al₃₀ Single Crystals

Peizhen Li ¹, Haluk E. Karaca ¹, Yury I. Chumlyakov²

Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky 40506-0503, USA

Abstract

The shape memory effect (SME) and superelasticity (SE) behavior of homogenized Co₃₅Ni₃₅Al₃₀ single crystals were systematically characterized along the [100], [110] and [111] orientations under compression. The shape memory behavior of CoNiAl was found to be highly orientation and stress/temperature dependent. Maximum compressive recoverable strains were 3.98 % in [110], 3 % in [100] and 0.30 % in [111] orientations, respectively. The Co₃₅Ni₃₅Al₃₀ demonstrated a very high superelastic temperature window of more than 350 °C along the [100] and [110] orientations. Moreover, two-way shape memory effect with very low thermal hysteresis of about 6 °C was observed along the [110] orientation. The large decrease of recoverable strain and hysteresis with stress (or temperature) was mainly attributed to the difference of elastic moduli of transforming phases.

Keywords: Shape memory alloys; CoNiAl; Single crystal; Two-way shape memory effect; superelasticity

1. Introduction

The magnetic shape memory alloys (MSMAs) received considerable attention since they have the ability to show large reversible magnetic field-induced strains (MFIS) [1, 2]. There are two main mechanism for reversible shape change: variant reorientation as in NiMnGa alloys or phase transformation as in NiMnCoIn alloys [3-5]. Although NiMnGa Heusler alloys can achieve high MFIS with low magnetic field, their extreme brittleness restricts their envisioned applications as magneto-actuators, sensors, caloric materials or energy harvesters. CoNiGa [6-9] and CoNiAl [10-12] alloys were developed as an alternative MSMA and they demonstrated high strength, stable behavior, low stress for variant reorientation, ability to alter transformation temperatures with heat treatments and high resistance to oxidation. The ductility of Co-based alloys were found to be improved mainly due to the existence of γ -phase (disordered fcc A1) [13]. The stress required for the onset dislocation slip of CoNiAl has been reported around 1100

² Siberian Physical-Technical Institute, Tomsk State University, Tomsk 634050, Russia.

Download English Version:

https://daneshyari.com/en/article/5459457

Download Persian Version:

https://daneshyari.com/article/5459457

<u>Daneshyari.com</u>