Accepted Manuscript

Nanoindentation measurements on a torsionally deformed $\rm Zr_{44}Ti_{11}Cu_{10}Ni_{10}Be_{25}$ bulk metallic glass

Zsolt Kovács, Mohammed Ezzeldien, Nguyen Quang Chinh, György Radnóczi, János Lendvai

PII: S0925-8388(17)30742-9

DOI: 10.1016/j.jallcom.2017.02.294

Reference: JALCOM 41022

To appear in: Journal of Alloys and Compounds

Received Date: 22 November 2016
Revised Date: 21 February 2017
Accepted Date: 27 February 2017

Please cite this article as: Z. Kovács, M. Ezzeldien, N.Q. Chinh, G. Radnóczi, J. Lendvai, Nanoindentation measurements on a torsionally deformed Zr₄₄Ti₁₁Cu₁₀Ni₁₀Be₂₅ bulk metallic glass, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.02.294.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nanoindentation measurements on a torsionally deformed $Zr_{44}Ti_{11}Cu_{10}Ni_{10}Be_{25} \ bulk \ metallic \ glass$

Zsolt Kovács^{1,*}, Mohammed Ezzeldien^{1,+}, Nguyen Quang Chinh¹, György Radnóczi² and János Lendvai¹

¹ Department of Materials Physics, Institute of Physics, Loránd Eötvös University, 1117 Pázmány Péter sétány 1/A., Budapest, Hungary

² Institute for Technical Physics and Mater. Sci., Centre for Energy Research HAS, 1121 Konkoly-Thege u. 29-33., Budapest, Hungary

Abstract: Nanoindentation measurements were performed on as-cast and torsionally deformed Zr₄₄Ti₁₁Cu₁₀Ni₁₀Be₂₅ bulk metallic glass samples. Distribution of the measured hardness values shows peak-increasing and widening as an effect of the plastic pre-deformation. Variation in the strength of the deformation affected material and the origin of strain hardening is explained by key characteristics of shear transformation zones in bulk metallic glasses.

Key words: strain hardening, bulk metallic glass, shear bands, nanoindentation, residual stresses

+ Permanente address: South Valley University, Faculty of Science, Physics Department, Qena, Egypt

Download English Version:

https://daneshyari.com/en/article/5459520

Download Persian Version:

https://daneshyari.com/article/5459520

<u>Daneshyari.com</u>