Accepted Manuscript

Electrosprayed copper hexaoxodivanadate (CuV₂O₆) and pyrovanadate (Cu₂V₂O₇) photoanodes for efficient solar water splitting

Min-woo Kim, Bhavana Joshi, Hyun Yoon, Tae Yoon Ohm, Karam Kim, Salem S. Al-Deyab, Sam S. Yoon

PII: S0925-8388(17)30750-8

DOI: 10.1016/j.jallcom.2017.02.302

Reference: JALCOM 41030

To appear in: Journal of Alloys and Compounds

Received Date: 14 November 2016
Revised Date: 21 February 2017
Accepted Date: 28 February 2017

Please cite this article as: M.-w. Kim, B. Joshi, H. Yoon, T.Y. Ohm, K. Kim, S.S. Al-Deyab, S.S. Yoon, Electrosprayed copper hexaoxodivanadate (CuV₂O₆) and pyrovanadate (Cu₂V₂O₇) photoanodes for efficient solar water splitting, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.02.302.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Electrosprayed copper hexaoxodivanadate (CuV₂O₆) and pyrovanadate (Cu₂V₂O₇) photoanodes for efficient solar water splitting

Min-woo ${\rm Kim}^{a,\dagger}, {\rm Bhavana\ Joshi}^{a,\dagger}, {\rm Hyun\ Yoon}^{b,\dagger}, {\rm Tae\ Yoon\ Ohm}^a, {\rm Karam\ Kim}^a, {\rm Salem\ S.}$ Al-Devab^c, Sam S. Yoon^{a,*}

^aSchool of Mechanical Engineering, Korea University, Seoul 136-713, Republic of Korea ^b KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), 50, UNIST-gil, Ulsan 44919, Republic of Korea

^cPetrochemical Research Chair Chemistry Department, College of Science, King Saud University, B.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Copper hexaoxodivanadate (CuV₂O₆) and copper pyrovanadate (Cu₂V₂O₇) films were fabricated via electrostatic spray deposition for use as photoanodes for solar water splitting. The fabricated films were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, Transmission electron microscopy and Xray diffraction analysis. The highest photocurrent density observed was 0.65 mA·cm⁻² for a spraying time of 5 min in a mixed aqueous electrolyte consisting of 0.1 M borate and 0.1 M Na₂SO₃. The high photocurrent density is attributable to an improvement in the electrochemical kinetics at the electrode surface because of the scavenging holes from the electrolyte. The optimal annealing temperature was determined to be 500°C. Further, Cu₂V₂O₇ was confirmed to be more suitable than CuV₂O₆ with respect to water splitting, as it exhibited a higher photocurrent density.

Keywords: Copper vanadate oxide, Water splitting, Photocurrent, Photoanode

*Corresponding author: skyoon@korea.ac.kr

[†]These authors have contributed equally

1

Download English Version:

https://daneshyari.com/en/article/5459540

Download Persian Version:

https://daneshyari.com/article/5459540

<u>Daneshyari.com</u>