Journal of Alloys and Compounds 709 (2017) 410-414

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Inverse and enhanced magnetocaloric properties of HoCrO₃

Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad, 502 285, India

ARTICLE INFO

Article history: Received 5 December 2016 Received in revised form 9 March 2017 Accepted 12 March 2017 Available online 14 March 2017

Keywords: Magnetocaloric effect Magnetization crossover Metamagnetic transition Spin – re-orientation

1. Introduction

In recent years, refrigeration based on magnetic materials particularly using magnetocaloric effect (MCE) phenomenon has gained much attention in view of its application in future magnetic refrigeration technology due to its higher energy efficiency and environmental safety over the conventional gas compression refrigeration [1–3]. MCE is a magneto-thermal phenomenon, in which the temperature of a magnetic material changes when it is exposed to a magnetic field adiabatically [4]. A magnetic materials with a large change of magnetic entropy $\Delta S_M(T, H)$ or adiabatic temperature (ΔT) and a sufficiently large value of refrigeration capacity (RC) are promising candidates for magnetic refrigeration [5]. A plethora of compounds have been investigated to study the MCE in alloys like Ni_{52.6}Mn_{23.1}Ga_{24.3} [6], Gd₅(Si₂Ge₂) [7], MnFeP_{0.45}As_{0.55} [8] as well as in oxide materials such as Tb_{0.67}R_{0.33}MnO₃ (R = Dy, Y and Ho) [9] and La_{1-x}Ca_xMnO₃ [10].

As far as oxide materials are concerned, distorted perovskite family of canted antiferromagnets, orthoferrites (RFeO₃) [11] and orthochromites (RCrO₃) [12] have attained much interest due to their unique physical properties and complex spin structure between the rare-earth (R) and the transition metal (TM) ions. RFeO₃ and RCrO₃ compounds have been explored for their MCE properties and suitability for magnetic refrigeration applications [13–15]. For example, a large MCE value of $-\Delta S \sim 8.4$ J/kg-K and RC ~ 217 J/kg at 15 K and 4 T has been observed in DyCrO₃ due to ordering of Dy³⁺ at

ABSTRACT

We report on the magnetic and magnetocaloric properties of 50% Fe³⁺ doped polycrystalline HoCrO₃ compounds in the vicinity of magnetic transitions. Due to complex magnetic interactions, we do see multiple transitions in χ vs. T graph pertinent to HoCrO₃ and HoCr_{0.5}Fe_{0.5}O₃ compounds related with Ho³⁺ ordering, Cr³⁺ ordering and spin – reorientation (SR). Due to re-orientation of spins, metamagnetic transitions are evident in low field regime of M vs. H. Quantified values of $-\Delta S_M$ around Ho³⁺ ordering infer that indeed Fe³⁺ substitution helped in enhancing magnetocaloric effect of HoCrO₃ compound. Such an enhanced $-\Delta S_M$ values are ascribed to increase in canting of Fe/Cr spins. Present results would be helpful in developing magnetic refrigerant materials for space applications particularly below 30 K.

2.3 K [14]. Yin et al., reported large MCE value of $-\Delta S \sim 10.5$ J/kg-K at 4 T around Dy³⁺ ordering (14 K) in DyFe_{0.5}Cr_{0.5}O₃ compound [15]. Yet in another compound, HoCrO₃, large value of MCE has been reported and the values are $-\Delta S \sim 7.2$ J/kg-K and RC ~408 J/kg at 20 K and at 7 T [16]. Although several reports have shown MCE on various magnetic materials like Dy_{1-x}Sc_xNi₂ [17], R_{1-x}La_xNi₂ (R = Tb, Dy, Ho) [18], Dy₂Cu₂Cd [19], TmAgAl [20], TmZn [21], Er₂Cu₂In [22], Eu₄PdMg [23], etc., as this field is highly demanding numerous new materials needs to be explored for various applications. Particularly, much attention is required to search for new materials with giant MCE below 30 K for utilization in space applications [1,24].

In this context, HoCrO₃ is a compound which shows large value of $-\Delta S$ (~7.2 J/kg-K) below 30 K. It is evident from the above discussion that substitution of Fe³⁺ in DyCrO₃ for Cr³⁺ has enhanced $-\Delta S$ values around Dy³⁺ ordering [15]. Hence, we believe that Fe³⁺ would play a crucial role in enhancing MCE in our present $HoCr_{0.5}Fe_{0.5}O_3$ compound around Ho^{3+} ordering. In addition, it also has been believed from neutron diffraction data that upon adding 50% of Fe to Cr, spin reorientation (SR) transition would be evident [25] due to an interaction between Ho³⁺ and Fe³⁺ moments. Such a SR transition would be associated with a change in magnetization direction from $G_x A_y F_z(\Gamma_4)$ to $F_x C_y G_z(\Gamma_2)$, where G_x , A_y , and F_z stand for spin component along x, y, and z axis in terms of Bertaut's notation, respectively [26], which can lead to large change in $-\Delta S_{M}$. Calculation of entropy change around SR transition is also aim of our present paper. Apart from the SR and Ho³⁺ ordering, indeed there exists a transition due to Cr^{3+} , which may also give large change in MCE. Hence, in the present work, we explored MCE properties of HoCrO₃ and HoCr_{0.5}Fe_{0.5}O₃ compounds around Ho³⁺, Cr³⁺ and SR transition temperatures. In addition, we also studied

ALLOYS AND COMPOUNDS

霐

^{*} Corresponding author. E-mail address: surya@iith.ac.in (S.N. Jammalamadaka).

the nature of magnetic transition in aforesaid compounds through Arrott plots. Salient features of present manuscript are (a) upon adding 50% of Fe³⁺ to Cr³⁺, enhanced value of MCE is evident in HoCr_{0.5}Fe_{0.5}O₃ compound (b) magnetization crossover is evident in HoCrO₃ compound and metamagnetic transition prevails around Ho³⁺ ordering in both HoCrO₃ and HoCr_{0.5}Fe_{0.5}O₃ compounds (c) Spin reorientation (SR) transition is apparent in HoCr_{0.5}Fe_{0.5}O₃ compound around 150 K.

2. Experimental details

Polycrystalline HoCrO₃ and HoCr_{0.5}Fe_{0.5}O₃ compounds were prepared by conventional solid state reaction method using High purity oxide powders of Ho₂O₃, Fe₂O₃, and Cr₂O₃ (purity > 99.9%) (Sigma-Aldrich chemicals India) as starting raw materials. The temperature (T) dependent magnetization (M) (M vs. T) and magnetic field (H) dependent magnetization (M vs. H) measurements were performed using a Quantum Design magnetic property measurement system (MPMS) in the temperature range of 5–300 K. Magnetization isotherms (M vs. H) were measured at different temperature ranges and up to a maximum magnetic field of 6 T. Before we perform each measurement of M vs. H, the sample was warmed up to a temperature greater than ordering temperature of transition metal to remove the magnetic history.

3. Results and discussion

The phase purity of HoCrO₃ and HoCr_{0.5}Fe_{0.5}O₃ compounds was confirmed [27] at room temperature using powder x - ray diffraction (XRD) (PANalytical X-ray diffractometer) with Cu - K_{α} radiation ($\lambda = 1.5406$ Å) and with a step size of 0.017° in the wide range of the Bragg angles 2 θ (20°–80°) as shown in Fig. 1. From the Fig. 1, it is observed that the indexed reflections are allowed for a compound with GdFeO₃ type distorted perovskite structure with a space group of *Pbnm*. We do not see any impurity phase within the detectable limits of the XRD. The structural parameters obtained from the Rietveld refinement has been published elsewhere [27]. The

increase in the lattice parameter is evident from the refinement with increasing Cr^{3+} content, which is consistent with the fact that ionic radius of Cr^{3+} (0.615 Å) is smaller than that of Fe³⁺ (0.645 Å).

Fig. 2(a) shows the temperature (T) vs. susceptibility (γ) graph in zero field cooled (ZFC) conditions. It is evident from the figure that the Cr^{3+} moments ordered antiferromagnetically (AFM) at 142 K. Such AFM is believed to have canting nature with AFM axis at 142 K (T_N). On the other hand, transition due to Ho³⁺ moments is evident at 8 K (T_N^{Ho}) [28]. Fig. 2(b) shows γ vs. T graph for HoCr_{0.5-} Fe_{0.5}O₃ compound. In 50% Fe substituted compound, in addition to AFM and Ho^{3+} (13 K) ordering, we also could able to realize a transition due to SR [25]. The origin of such SR is due to change in magnetization from $G_x A_v F_z(\Gamma_4)$ to $F_x C_v G_z(\Gamma_2)$, where G_x , A_v , and F_z stand for spin component along x, y, and z axis in terms of Bertaut's notation, respectively. Such a SR transition is evident around 150 K (T_{SR}) and we also ascribe such SR in HoCr_{0.5}Fe_{0.5}O₃ compounds to complex exchange interaction between the Fe^{3+} and the Ho^{3+} ions [29]. Indeed, there is a shift for Ho^{3+} ordering from 8 to 13 K and T_N from 142 to 273 K upon adding 50% Fe to Cr. The obtained T_N and T_{SR} values are in good agreement with the literature [25,28].

As there are multiple transitions in both the compounds, we do expect a large change in entropy around these transitions. Hence, in order to quantify the change in entropy we performed the M vs. H measurements in the vicinity of the magnetic transitions for both the HoCrO₃ and HoCr_{0.5}Fe_{0.5}O₃compounds. Fig. 3(a)-(d) shows first quadrant magnetization isotherms of HoCrO₃ (at 2-10 K and 136-146 K with an interval of 2 K) and HoCr_{0.5}Fe_{0.5}O₃ (at 5-20 K with an interval of 3 K and 120–200 K with an interval of 10 K) compounds with a maximum magnetic field of 6 T. A field induced metamagnetic transition is evident in the low magnetic field region for all M vs. H graphs pertinent to HoCrO₃ and HoCr_{0.5}Fe_{0.5}O₃ compounds as shown in Fig. 3(a) and 3(b). Now we define the critical field (H_C) as the field below which the material shows AFM behaviour and exhibits ferromagnetic (FM) behaviour above this field. Such a field induced transition in low field region can be ascribed to the onset of a first order metamagnetic transition (from original AFM state to FM state). Evidenced metamagnetic transition may be due to the magnetization reversal of those ions whose

Fig. 1. Powder x-ray diffraction patterns pertinent to ${\rm HoCrO_3}$ and ${\rm HoCr}_{0.5}{\rm Fe}_{0.5}{\rm O_3}$ recorded at room temperature.

Fig. 2. Temperature (T) dependence of susceptibility (χ) pertinent to HoCrO₃ and HoCrO₅Fe_{0.5}O₃ compounds measured at 0.1 T under zero field cooled condition (ZFC).

Download English Version:

https://daneshyari.com/en/article/5459634

Download Persian Version:

https://daneshyari.com/article/5459634

Daneshyari.com