Accepted Manuscript

Nanostructure evolution of zinc stannate: A suitable material for liquefied petroleum gas detection

Hamoon Hedayat, P.Siva Prasada Reddy, M.V. Manasa, G. Sarala Devi, J.V.Ramana Rao, G.Nageswara Rao

PII: S0925-8388(17)30455-3

DOI: 10.1016/j.jallcom.2017.02.039

Reference: JALCOM 40767

To appear in: Journal of Alloys and Compounds

Received Date: 29 November 2016
Revised Date: 29 January 2017
Accepted Date: 5 February 2017

Please cite this article as: H. Hedayat, P.S.P. Reddy, M.V. Manasa, G. Sarala Devi, J.V.R. Rao, G.N. Rao, Nanostructure evolution of zinc stannate: A suitable material for liquefied petroleum gas detection, *Journal of Alloys and Compounds* (2017), doi: 10.1016/j.jallcom.2017.02.039.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nanostructure Evolution of Zinc Stannate: A Suitable Material for Liquefied Petroleum Gas Detection

Hamoon Hedayat^{1, #}, P. Siva Prasada Reddy¹, M.V. Manasa^{1, 2}, G. Sarala Devi^{1, 2,*}, J. V. Ramana Rao³, and G. Nageswara Rao⁴

²Academy of Scientific and Innovative Research (AcSIR);

Tel.: +91-040-27191532; Fax: 91-40-27160921

Abstract:

We successfully synthesized a semiconducting zinc stannate (Zn₂SnO₄) - with a face-centred cubic spinel structure, a band gap (Eg =3.4eV), and a crystallite size of 29 nm - by co-precipitation. Post-thermal treatment revealed three transition temperatures: 500°C, 700°C and 1000°C. We systematically monitored the formation of different nanostructures by changing the annealing temperature through diverse characterization techniques such as thermogravimetric and differential thermal analysis (TGA, DTA), X-ray powder diffraction (XRD), ultraviolet–visible and Raman spectroscopies, field-emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray Spectroscopy (EDS). Our characterization data demonstrate a novel and facile way to synthesize fine quality zinc stannate (Zn₂SnO₄) nanoparticles with the specific surface area of 17 (m²g⁻¹). The achieved features make the sample a potential candidate for the fabrication of a gas detection sensor. After exposing the gas sensing characteristics of the resulting Zn₂SnO₄ nanoparticles to several gases, we found out that it demonstrates outstanding sensitivity, response and recovery time, and selectivity towards liquefied petroleum gas (LPG).

Keywords: Zinc stannate; nanostructure; gas sensor; XRD; RAMAN; LPG;

¹Inorganic & Physical Chemistry Division, Nanomaterials and Sensors Lab, Indian Institute of Chemical Technology, Habsiguda, Hyderabad – 500607 – India;

³Center for Nanoscience and Technology, IST, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad- 500085 – India;

⁴Department of Inorganic & Analytical Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh - 530003– India

^{*}Corresponding author: sarala.ipc@gmail.com

[#] Center for Nanoscience and Technology, JNTU, Hyderabad- 500085 – India. Currently at Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci, 32 - 20133 Milano, Italy

Download English Version:

https://daneshyari.com/en/article/5460010

Download Persian Version:

https://daneshyari.com/article/5460010

<u>Daneshyari.com</u>