FISEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

The Dy-Ni-In system at 870 K: Isothermal section, solid solutions, crystal structures

Yu.B. Tyvanchuk ^{a, *}, V.I. Zaremba ^a, L.G. Akselrud ^a, A. Szytuła ^b, Ya.M. Kalychak ^a

- ^a Chemical Faculty of Ivan Franko National University of Lviv, Kyryla i Mephodiya 6, 79005, Lviv, Ukraine
- ^b M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland

ARTICLE INFO

Article history:
Received 27 October 2016
Received in revised form
31 January 2017
Accepted 3 February 2017
Available online 7 February 2017

Keywords:
Rare earth alloys and compounds
Intermetallics
Phase diagram
Crystal structure
X-ray diffraction
Magnetic measurements

ABSTRACT

Isothermal section of the Dy-Ni-In system at T = 870 K has been constructed. Twelve compounds exist in the system, namely: DyNigIn₂, Dy₄Ni_{10.80}In_{20.20}, DyNi₄In, DyNiIn₂, DyNi_{1-x}In_{1+x} (x = 0÷0.4), Dy₂Ni₂In, Dy₂Ni_{2-x}In (x = 0.22), Dy₅Ni₂In₄, Dy₁₁Ni₄In₉, Dy₆Ni_{2.34}In_{0.66}, ~Dy₆₇Ni₂₂In₁₁ and Dy_{13.60}Ni_{3.34}In_{3.06}. Previously reported Dy₁₀Ni₉In₂₀ and Dy₃Ni₂In₄ compounds exist at higher temperature.

The Ni/In substitution was observed for $DyNi_{1-x}In_{1+x}$ ($x=0\div0.4$) and the Dy/In for $Dy_{1-x}Ni_2In_x$ ($x=0\div0.5$) solutions. Solid solution Dy_xNiIn_{1-y} , based on binary NiIn, extends up to 8 at.% Dy. Crystal structure of this solution at the composition $Dy_{0.13}NiIn_{0.93}$ was studied by single crystal and powder X-ray diffraction. Magnetic properties of numerous Dy-Ni-In compounds have been reviewed as well.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The ternary systems *RE-T*-In (*RE* - rare earths, *T*-transition metal) are sufficiently rich in ternary compounds [1–3] which have attracted broad interest in recent years with respect to their interesting crystal chemistry and greatly varying physical properties. A comprehensive overview of the systems has been given in paper [4]. Whereas the systems with copper have been studied in detail, the investigation of other transition metal containing systems has not been fully completed. According to mentioned references, the Ni-containing ternary systems are mostly rich in ternary compounds among the concerned systems and nearly 150 $RE_xNi_yIn_z$ compounds are known. Isothermal sections of the phase diagrams have been constructed only for *RE*-Ni-In systems with RE = Ce, Tb, Er and Tm [5–8].

According to [1,4,9,10] twelve compounds are known in the system with dysprosium: DyNi₉In₂, Dy₄Ni_{10.80}In_{20.20}, DyNi₄In, DyNiIn₂, Dy₁₀Ni_{9.32}In₂₀, DyNiIn, Dy₂Ni₂In, Dy₂Ni_{2-x}In, Dy₅Ni₂In₄, Dy₁₁Ni₄In₉, Dy₆Ni_{2.34}In_{0.66} and Dy_{13.60}Ni_{3.34}In_{3.06}.

Corresponding author. E-mail address: yutyv@yahoo.com (Yu.B. Tyvanchuk). The $Dy_3Ni_2In_4$ compound (= $DyNi_{0.67}In_{1.33}$) has recently been reported in Ref. [51] at 1020 K. It crystallizes with the hexagonal $Lu_3Co_2In_4$ -type structure that is a superstructure to ZrNiAl type.

The latest data on the binary phase diagram and the compounds of Dy—In system were taken from Ref. [11], those of Dy-Ni from Ref. [12] and of Ni-In from Refs. [13,14].

In this paper we report on the isothermal section of the Dy-Ni-In phase diagram at 870 K. The particularities of crystal structure and physical properties of the ternary indides are discussed.

2. Experimental

For investigation of the interaction in the Dy-Ni-In ternary system 91 binary and ternary samples have been synthesized. The samples were prepared by arc melting under purified argon atmosphere ($P=50\,$ kPa, sponged Ti was used as a getter) of the constituent components with certified purities of 99.8 wt. % for Dy, 99.92 wt. % for Ni and 99.99 wt. % for In. All buttons were re-melted twice to ensure homogeneity. The overall weight losses were generally less then 1 wt. % of starting weight near 1 g. The samples were annealed at 870 K for 720 h in evacuated quartz tubes and finally were quenched in cold water without breaking the tubes.

X-ray phase analysis was the main method for isothermal

section construction. It was carried out using film data (Debye-Scherrer technique, RKD-57.3 cameras, CrK-radiation) and measurements using DRON-2.0 M (FeK $_{\alpha}$ -radiation) and STOE STADI P (MoK $_{\alpha}$ 1 and CuK $_{\alpha}$ 1 radiation) diffractometers. Indexing of the obtained diffraction data of the ternary samples was performed by comparison with calculated data using Powder Cell program [15].

Single crystals were studied using a Xcalibur diffractometer from Oxford Diffraction, equipped with a Sapphire2 CCD detector and an Enhance X-ray source option.

The Rietveld refinements of powder data were made using WinCSD [16] program package. The WinCSD was also used for single crystal structure refinement.

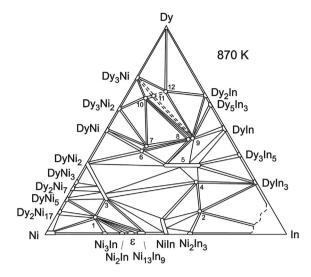
Metallographic and quantitative phase analyses were performed for selected samples using a Neophot 30 optical microscope and a REMMA-102-02 raster electronic microscope equipped with an energy dispersive X-ray analyzer (EDX).

Magnetic measurements were carried out using a vibrating sample magnetometer (VSM) option of the Quantum Design PPMS platform (Institute of Physics, Jagellonian University, Krakow, Poland). Measurement of ZFC (zero field cooling) magnetic susceptibility from 1.9 K up to 350 K in a magnetic field of 1 kOe was performed in order to determine phase transition temperatures, effective magnetic moment $\mu_{\rm eff}$ and paramagnetic Curie temperature $\theta_{\rm n}$ for DyNi₄In compound.

3. Results and discussions

3.1. Isothermal section

The isothermal section of the phase diagram of Dy-Ni-In system at 870 K has been constructed for the first time and it is shown in Fig. 1.


At this temperature all binary compounds of Dy-In system [11]: Dy₂In (Ni₂In type), Dy₅In₃ (W₅Si₃), DyIn (CsCl), Dy₃In₅ (Pu₃Pd₅) and DyIn₃ (AuCu₃) have been confirmed. In Ni–In system [14] compounds: Ni₃In (Ni₃Sn type), Ni₂In (own structure), ζ –phase (high temperature modification of Ni₂In), Ni₁₃In₉ (In₉Pt₁₃), NiIn (CoSn), Ni₂In₃ (Al₃Ni₂) have been observed. Eight compounds of Dy-Ni system [12]: Dy₃Ni (Fe₃C), Dy₃Ni₂ (own structure), DyNi (FeB), DyNi₂ (MgCu₂), DyNi₃ (PuNi₃), Dy₂Ni₇ (Gd₂Co₇ type), DyNi₅ (CaCu₅) and Dy₂Ni₁₇ (Th₂Ni₁₇) have been observed.

At 870 K the Dy-Ni-In system is characterized by the formation of twelve ternary compounds which are listed in Table 1 (the numbers of the compounds correspond to those of Fig. 1). One of those compounds of ~ ${\rm Dy_{67}Ni_{22}In_{11}}$ composition has been revealed in this research.

The only two binary compounds DyNi₂ and Niln dissolve significant amount of the third element. The single ternary phase of equiatomic composition forms extended homogeneity region. The particularities of the phase equilibria in the Dy-Ni-In ternary system at 870 K are described below.

3.2. DyNiIn₂ and Dy₁₀Ni₉In₂₀ compounds

Two compounds with very close stoichiometry DyNiln₂ (Dy₂₅Ni₂₅In₅₀) and Dy₁₀Ni_{9,32}In₂₀ (Dy_{25,4}Ni_{23,7}In_{50,9}) have been reported in the literature. According to [20] the crystal structure of DyNiln₂ was adopted to MgCuAl₂ and this of Dy₁₀Ni₉In₂₀ - to Ho₁₀Ni₉In₂₀ type [21]. At temperature of investigation only DyNiln₂ has been confirmed. Dy₁₀Ni₉In₂₀ has been obtained in Ref. [21] by a special heat treatment (the sample was first heated to 1270 K within 5 h and held at that temperature for 5 h. Subsequently the temperature was lowered at a rate of 4 K/h to 1030 K, then at a rate of 20 K/h to 630 K, and finally cooled to room temperature within 5 h). The Dy₁₀Ni₉In₂₀ compound, probably, exists at higher

Fig. 1. Isothermal section of the Dy-Ni-In phase diagram at 870 K. The numbers of the compounds in figure correspond to those in Table 1.

temperature.

3.3. Dysprosium-rich corner of the isothermal section

Three phases have been detected in region of high dysprosium concentration, more than 60 at. % Dy, namely: $Dy_6Ni_{2.34}In_{0.66}$ with crystal structure of Ho_6Co_2Ga type, $Dy_{14}Ni_3In_3$ - $Lu_{14}Co_2In_3$ type and ~ $Dy_{67}Ni_{22}In_{11}$ compound with unknown complex structure. According to EDX analysis composition of latter compound equals $Dy_{64.0}Ni_{19.3}In_{16.7}$.

3.4. $DyNi_{1-x}In_{1+x}$ solid solution

The first time DyNiIn compound was studied by Ref. [22] and it was adopted to Fe₂P type or its ordered derivative ZrNiAl. Later, it was established that this compound has homogeneous region, which can be described as $\mathrm{DyNi}_{1-x}\mathrm{In}_{1+x}$ ($\mathrm{x}=0\div0.4$). Substitution of nickel by indium (Fig. 2a) is accompanying by increasing of cell volume, according to atomic radii of elements [26], but if period a is increasing then period c is slightly decreasing [23]. Similar tendency was confirmed by single crystal investigation of $\mathrm{TmNi}_{1-x-y}\mathrm{In}_{1+x}$ structure [27]. According to it, the solid solution is characterized not only by occupation of 2d site of $P\overline{6}2m$ space group with Ni2/In2 mixture, but with partly occupation of 1a site with Ni1 atoms too.

3.5. $Dy_{1-x}Ni_2In_x$ (0 $\leq x \leq$ 0.5) solid solution

DyNi₄In was investigated for the first time in Ref. [19] and it was concerned as individual compound with the MgCu₄Sn structure type. The systematic studies of the phase equilibria in this concentration region reveal solid solution between Laves phase DyNi₂ (MgCu₂ type) and DyNi₄In (MgCu₄Sn type, ternary derivative of MgCu₂) where substitution of rare earth atoms by indium in $\frac{1}{4}$ $\frac{1}{4}$ position occurs according to scheme: $8 \text{ RENi}_2 = RE_8 \text{Ni}_{16} = RE_4 RE_4 \text{Ni}_{16} = RE_4 \text{In}_4 \text{Ni}_{16} = 4 RE\text{Ni}_4 \text{In}$. Lattice parameter decreases with small deviations from Vegard's rule up to the DyNi₄In composition (Fig. 2b). In systems with Tb and Tm same solid solutions have been revealed [6,28]. For ErNi₂ — ErNi₄In section two-phase equilibrium between two solid solutions has been noticed [7].

Download English Version:

https://daneshyari.com/en/article/5460046

Download Persian Version:

https://daneshyari.com/article/5460046

<u>Daneshyari.com</u>